BARBER COVE DEVELOPMENT

Drainage Report

Prepared for: 32-36 Iron Horse, LLC 75 West Street Simsbury, Connecticut 06070

141.17126.00001

May 28, 2021

Drainage Report

Barber Cove Development 32 and 36 Iron Horse Boulevard Simsbury, CT May 28, 2021 141.17126.00001

This Drainage Report has been prepared in support of the Barber Cove Development to be constructed at the two abutting parcels located at 32 and 36 Iron Horse Boulevard in the town of Simsbury, Connecticut. The 13.6-acre development site is located along the Farmington River and within the Simsbury Center (SC) Zone SC-5. The property is currently active as a contractor's storage yard with remnants of prior industrial activities, stockpiles, compacted graveled roads, contractor's equipment, and two buildings. The access drives and parking areas around and between the buildings consist of a compacted gravel mix over remnants of old bituminous milling from prior operations. The site is proposed to be redeveloped as a residential development with five multifamily apartment buildings, outdoor parking areas, three garage buildings, a clubhouse, pool area, paved sidewalks, and a walking trail around the perimeter of the development.

Figure 1 – #32 and #36 Parcels

Table 1 – Stormwater Data

Parcel Size Total	13.56 acres
Existing Impervious Area (Project Area)	8.79 acres
Proposed Impervious Area (Project Area)	7.46 acres
Soil Types (Hydrologic Soil Group)	"B," "C," and "D"
Existing Land Use	Woods, meadow, open space, compacted graveled road, concrete walks, bituminous pavement, building, and water surface
Proposed Land Use	Woods, meadow, lawn, bituminous pavement, sidewalks, parking, patios, building, and water surface
Design Storm for Stormwater Management	No increases in peak rates of runoff for the 2-, 10-, 25-, 50-, and 100-year storms. Recharge Volume and Water Quality Volume per Simsbury regulations and CTDEEP Stormwater Manual (CTDEEP WQV and GRV).
Water Quality Measures	2-foot-sump catch basins, underground infiltration chambers, hydrodynamic separator, water quality swale (wet swale), tree planting, and stone-lined energy dissipator
Design Storm for Storm Drainage	25-year storm
Federal Emergency Management Agency Special Flood Hazard Areas	Regulatory Floodway, Zone AE with BFE (100-year), 0.2% Annual Chance Flood Hazard (500-year)
Connecticut Department of Energy & Environmental Protection Aquifer Protection Areas	Not applicable

STORMWATER MANAGEMENT APPROACH

The stormwater management system for this site has been designed utilizing Best Management Practices (BMPs) to provide water quality management and ensure that predevelopment peak rates of runoff would not be exacerbated due to the new development. The proposed design was planned in accordance with the Simsbury Stormwater Article dated September 28, 2011, as included as part of the town's Land Use Department, and the Connecticut Department of Energy and Environmental (CTDEEP) 2004 Stormwater Manual.

The performance standards outlined in the Simsbury Stormwater Article are organized into three areas:

- 1. Planning and Site Design Criteria Checklist
- 2. Stormwater Quantity and Quality Requirements:
 - 2.1. Redevelopment
 - 2.2. Peak Rate
 - 2.3. Recharge Volume

- 2.4. Water Quality
- 2.5. Conveyance
- 2.6. Offsite Mitigation and Stormwater Mitigation Bank
- 2.7. Site BMP Incentive Credits
- 3. Design and Construction Requirements:
 - 3.1. BMP Requirements
 - 3.2. Special Detention Areas

1. Planning and Site Design Criteria Checklist

The new site has been planned to be a compact and walkable development including several sidewalks that will be integrated with the existing walking trail that runs on Iron Horse Boulevard. The goal is to preserve natural resources, maintain existing drainage patterns to the maximum extent possible, and manage rainfall on the site through a series of Low Impact Design (LID) techniques and BMPs. An improvement in site runoff conditions is expected based on the proposed stormwater improvements planned for the project. There is currently no stormwater infrastructure on the site, and runoff from the storage yard operations drains off site toward the eastern wetlands and Farmington River without any type of water quality treatment. The proposed project will introduce a new stormwater treatment train consisting of new landscaped and grassed areas, new planted trees, catch basins with 2-foot sumps, a hydrodynamic separator, underground infiltration chambers, and a final water quality swale – a wet swale as a CTDEEP primary stormwater practice.

2. Stormwater Quantity and Quality Requirements

The stormwater quantity and quality performance standards are adjusted based on the zoning district. The site is subject to the requirements of the Simsbury Center SC-5 zone, and the performance standards are multiplied by the location-based adjustment factor per Stormwater Article requirements (Table 1.1), which are summarized as follows:

- Peak Rate = Peak rate reduction not required for the 100-year storm event. The development must still provide safe overflow conveyance for the postdevelopment peak runoff rate from the 100-year design storm event.
- Water Quality = 100% = multiplying factor equal to 1
- Recharge Volume = 50% = multiplying factor equal to 0.5

2.1 Redevelopment

Projects with more than 50% pre-development impervious surface cover are considered redevelopment projects. At a minimum, redevelopment projects must implement planning, design criteria, and structural BMP measures to meet water quality treatment and recharge volume requirements for at least 50% of the postdevelopment effective impervious area.

Based on visual investigation of existing land use, soil subsurface testing, and historical aerial photogrammetry, the site's land use consists mostly of compacted graveled access roads, a mix of compacted gravel and remnants of bituminous milling on the parking areas around and between the two existing buildings, some paved areas, stockpiles, and sparse wooded areas along the perimeter of the site.

Existing infiltration is minimum based upon land use investigation, which was evidenced by water ponding after rain events.

Types of Impervious Areas	Area (acres)			
Buildings	0.40			
Graveled Roads	4.27			
Mix Gravel and Bituminous Milling	3.99			
Paved	0.13			
Total Impervious Area	8.79			
Site Area	13.56			
% Impervious = 64%				

Table 2 – Existing Impervious Area Chart

Per the definition of impervious area in the Simsbury zoning regulations, the existing land use was delineated. The property site was determined to contain approximately 64% of impervious area. Therefore, the adjustment factor of 50% was applied to the water quality and recharge volume performance standard requirements.

2.2 Peak Rate

The postdevelopment impervious area will be less than the predevelopment conditions' impervious coverage. As an improvement in land coverage is expected from the new development, the postdevelopment peak rates of runoff will be less than the predevelopment peak rates of runoff. Therefore, the peak-rate requirements from the Simsbury Stormwater Article for the 2-, 10-,25- and 100-year, 24-hour design storm events are met. A detailed hydrologic analysis has been prepared and the results of the peak rates of runoff are included in that section of this report.

2.3 Recharge Volume

The required recharge volume was calculated by multiplying the Effective Impervious Area – Volume (EIA-V) by the groundwater recharge depth. The EIA-V is the effective impervious area after the application of Site BMP volume incentives. The Barber Cove project has a considerable amount of new tree planting; thus, a credit from tree planting – which reduces the postdevelopment impervious area – was applied towards the computations. This is explained further under Section 2.7 "Site BMP Incentive Credits."

The site is predominantly located within Hydrologic Soil Group "B." Therefore, the groundwater recharge depth used in the computations was 0.35 inches per Table 1.2 of the Stormwater Article.

The required Recharge Volume, after multiplying the calculated recharge volume by 50% due to the redevelopment factor and by another 50% due to the location-based factor (SC-5 Zone), was calculated to be 2,339 cubic feet. The provided volume achieved by the proposed infiltration chambers is approximately 11,750 cubic feet, thus meeting Simsbury's Recharge Volume requirements. The chambers were strategically located on the site observing groundwater levels and proposed finished grades. The

galleries will receive stormwater runoff only from the proposed rooftop areas from the five new buildings. The volume provided in the chambers is also used toward meeting the CTDEEP Water Quality Volume (WQV) and Groundwater Recharge Volume (GRV) requirements, which is further discussed in this report.

2.4 Water Quality

The required water quality volume for the project is 1-inch of rainfall over the Effective Impervious Area – Water Quality (EIA-WQ). The EIA-WQ for the site was calculated by applying the redevelopment credit of 50% and subtracting the Site BMP Incentive from the Post-Development Impervious Area, for a total of 13,362 cubic feet required water quality volume. There is no adjustment factor due the location-based SC-5, based on Table 1.1 from the Simsbury Stormwater Article.

The proposed water quality swale has approximately 15,440 cubic feet of storage volume below the overflow elevation. Therefore, the volume provided meets Simsbury's water quality volume requirements. The wet swale will include a sediment forebay area and will be preceded by a pretreatment proprietary hydrodynamic separator. This unit was sized based on CTDEEP requirements for Water Quality Flow (WQF), which is discussed in the Water Quality Management Section of this report.

2.5 Conveyance

The proposed storm drainage systems were designed to provide adequate capacity to convey the 25-year storm event. The wet swale will have two emergency outlets that will function simultaneously during large storm events. The primary emergency outlet consists of a trapezoidal-shaped spillway located on the south end of the swale. A secondary overflow consisting of a 24-inch riser pipe will be installed on the north end of the swale, fitted with a dome grate and an outlet pipe. The discharge capacity of both outlets combined is greater than the contributing discharge from a 100-year storm event.

The computer program entitled *Hydraflow Storm Sewers Extension for AutoCAD® Civil 3D® 2019* by Autodesk, Inc., Version 2018.3, was used for designing the proposed storm drainage collection system. Storm drainage computations performed include pipe capacity and hydraulic grade line calculations. The contributing watershed to each individual catch basin inlet was delineated to determine the drainage area and land coverage. These values were used to determine the stormwater runoff to each inlet using the Rational Method. The rainfall intensities for the site were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10, Precipitation Frequency Data Server (PFDS).

2.6 Off-Site Mitigation and Stormwater Mitigation Bank

Off-site mitigation and stormwater mitigation bank are not applicable to this project. Stormwater runoff rates and volumes requirements are met as part of the proposed project.

2.7 Site BMP Incentive Credits

Site BMP Incentive Credits allow for a reduction in the postdevelopment impervious area used for calculation purposes, resulting in the Effective Impervious Area (EIA). For this project, a considerable amount of new planted trees was used as a BMP incentive credit. This credit is applied such that 100 square feet of impervious area is deducted from the final postdevelopment impervious area for each qualifying new tree planted within 10 feet of ground-level impervious surfaces. However, a maximum of 25% of the trees can be counted toward the tree credit.

A total of 168 trees that are part of the Landscaping Plan qualifies for this credit. 42 trees (25%) were counted toward the credit, resulting in a reduction of 4,200 square feet of the actual postdevelopment impervious area, which is 324,910 square feet, or 7.46 acres. By applying the reduction area credit from tree planting, the effective impervious area used toward the computations was reduced to 320,710 square feet, or 7.36 acres.

3. Design and Construction Requirements

3.1 BMP Requirements

The development has been designed in accordance with the guidelines of the CTDEEP 2004 Stormwater Quality Manual. All construction and erosion and sediment controls provided are in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control. Structural stormwater BMPs were selected using the guidance of the Site BMP Selection Matrix (Table 1.3) of the Simsbury Stormwater Article. A pretreatment device will be installed prior to the final stormwater discharge into the water quality swale and the wetland areas. The infiltration chambers will receive clean runoff from rooftop areas; therefore, a pretreatment device preceding the chambers will not be needed.

3.2 Special Detention Areas

Special Detention Areas are not applicable to the proposed project.

Stormwater Operation and Maintenance

A detailed Stormwater Management Operation and Maintenance Plan is included in the proposed Utilities Plan Sheet UT, which comprises of recommended frequency of services, procedures for inspection and maintenance of the proposed BMPs, disposal of materials, and owner's responsibilities.

WATER QUALITY MANAGEMENT

In addition to the water quality requirements from the town of Simsbury, the proposed drainage plan has also been developed following the recommendations set forth in the CTDEEP *2004 Stormwater Quality Manual.* All of the treatment measures described in this section will help maintain water quality of the stormwater runoff from the proposed site.

Stormwater runoff from the proposed improvements will be collected by a subsurface pipe and catch basin drainage system. The proposed drainage system will include catch basins with 2-foot sumps that will trap sediments.

The proposed hydrodynamic separator selected is a CDS[®] unit, which is manufactured by Contech Engineered Solutions. The unit will be installed in the storm drainage system prior to discharging runoff into the proposed water quality swale and the final discharge toward the eastern wetland areas. This unit will further remove suspended solids before discharging downgradient; this will in turn remove other pollutants that tend to attach to suspended solids and effectively remove other debris and floatables that may be present within stormwater runoff. The hydrodynamic separator has been designed to meet the criteria recommended by the CTDEEP *2004 Stormwater Quality Manual* and was sized based on the

determined WQF, which is the peak-flow rate associated with the WQV, following the manufacturer's specifications.

The wet water quality swale will be constructed as a multi-cell system with several shallow depressions formed by berms. The bottom of the swale is planned to be saturated to support vegetation growth. The multi-cell system will enhance plug flow conditions where incoming water displaces the water retained in the system from the previous rain event. The first depression will act as a sediment forebay where floatables can be trapped and coarse sediment and other pollutants can be filtered. The forebay will contain the deposited sediment within a small area of the basin and will allow for maintenance accessibility.

The volume requirements associated with the CTDEEP WQV and GRV were achieved by the combined retention volume provided in the infiltration chambers and the water quality swale. The CTDEEP 2004 Stormwater Quality Manual (Chapter 7) recommends methods for sizing stormwater treatment measures with WQV and GRV computations. The WQV addresses the initial stormwater runoff also commonly referred to as the "first flush" runoff. The WQV provides adequate volume to store the initial 1 inch of runoff, which tends to contain the highest concentrations of potential pollutants. The GRV provides adequate volume to maintain the predevelopment annual ground water recharge and promote infiltration based on the soils found on the site. When provided, the GRV will achieve similar stormwater infiltration capabilities and maintain adequate ground water recharge. All supporting calculations for the volume provided as well as WQV and GRV computations have been included in the Appendix of this report.

HYDROLOGIC ANALYSIS

A detailed hydrologic analysis has been conducted to analyze the predevelopment and postdevelopment peak-flow rates from the site. Five analysis points were chosen based on the fact that each area receives stormwater runoff from a portion of the proposed project site, including the contributing off-site upstream areas. The existing subwatersheds were used to determine runoff for current site conditions. The existing watersheds were then modified and subdivided further to reflect the proposed changes to the site and analyze the hydrology under proposed conditions. The total combined watershed area delineated is approximately 14.6 acres under both existing and proposed conditions. A watershed map for both existing and proposed conditions is included in the Appendix of this report. The following table provides a brief description of the eight analysis points used in this hydrology study:

Description
Eastern Property Boundary (subwatersheds numbered in the 10s)
Northern Property Boundary (subwatersheds numbered in the 20s)
Northwestern Property Boundary (subwatersheds numbered in the 30s)
Southwestern Property Boundary (subwatersheds numbered in the 40s)
Southern Property Boundary (subwatersheds numbered in the 50s)

The method of predicting the surface water runoff rates utilized in this analysis is a computer program entitled *Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2019* by Autodesk, Inc., Version 2020. The *Hydrographs* program is a computer model that utilizes the methodologies set forth in the *Technical Release No. 55* (TR-55) manual and *Technical Release No. 20* (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The *Hydrographs* computer modeling program is primarily used for conducting hydrology studies such as this one.

The *Hydrographs* computer program forecasts the rate of surface water runoff based upon several factors. The input data includes information on land use, hydrologic soil type, vegetation, contributing watershed area, time of concentration, rainfall data, storage volumes, and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and stormwater management basins. The input data for rainfalls with statistical recurrence frequencies of 2, 10, 25, 50, and 100 years was obtained from the NOAA Atlas 14, Volume 10 database.

Storm Frequency	Rainfall (inches)
2-year	3.31
10-year	5.32
25-year	6.58
50-year	7.50
100-year	8.52

Table 4 – NOAA Rainfall Amounts

Land use for the site under existing and proposed conditions was determined from field survey, town topographic maps, and aerial photogrammetry. Land use types used in the analysis included woods, meadow, grassed or open space, graveled roads, building, impervious (drives, sidewalks, parking, patios), and water surface. Soil types in the watershed were determined from the CTDEEP Geographic Information System (GIS) database of the USDA-NRCS soil survey for Hartford County, Connecticut. For the analysis, the site was determined to contain hydrologic soil types "B," "C," and "D" as classified by NRCS. Composite runoff Curve Number (CN) for each subwatershed was calculated based on the different land use and soil types. The time of concentration (Tc) was estimated for each subwatershed using the TR-55 methodology and was computed by summing all travel times through the watershed as sheet flow, shallow concentrated flow, and channel flow.

The existing conditions were modeled with the *Hydrographs* program to determine the peak-flow rates for the various storm events at each analysis point. A revised model was developed incorporating the proposed grading, storm drainage, and proposed land coverage. The flows obtained with the revised model were then compared to the results of the existing conditions model. A reduction in the predevelopment peak runoff rates is expected under proposed conditions due to the proposed improvements to the site. The following peak rates of runoff were obtained from the *Hydrographs* hydrology results:

Analysis Point A – Eastern Property Boundary						
	Peak Runoff Rate (cubic feet per second)					
Storm Frequency (years)	2 10 25 50 100					
Existing Conditions	23.0	46.5	61.5	72.4	84.6	
Proposed Conditions	19.1	40.2	53.9	64.0	75.2	

Analysis Point B – Northern Property Boundary						
	Peak Runoff Rate (cubic feet per second)					
Storm Frequency (years)	2 10 25 50 100					
Existing Conditions	0.6	1.3	1.7	2.0	2.3	
Proposed Conditions	0.3	0.6	0.9	1.0	1.2	

Analysis Point C – Northwestern Property Boundary						
	Peak Runoff Rate (cubic feet per second)					
Storm Frequency (years)	2 10 25 50 100					
Existing Conditions	0.2	0.7	1.0	1.3	1.5	
Proposed Conditions	0.2	0.4	0.6	0.7	0.8	

Analysis Point D – Southwestern Property Boundary						
	Peak Runoff Rate (cubic feet per second)					
Storm Frequency (years)	2 10 25 50 100					
Existing Conditions	0.2	0.4	0.5	0.5	0.6	
Proposed Conditions	0.2	0.3	0.4	0.5	0.6	

Analysis Point E – Southern Property Boundary						
	Peak Runoff Rate (cubic feet per second)					
Storm Frequency (years)	i) 2 10 25 50 100					
Existing Conditions	0.1	0.5	0.9	1.1	1.4	
Proposed Conditions	0.1	0.4	0.7	1.0	1.2	

CONCLUSION

The results of the hydrologic analysis demonstrate that there will be no increases in peak-flow rates from the project site. Since impervious coverage will be reduced and new lawn areas will be established under proposed conditions, an improvement in site runoff conditions is expected to occur after the new development is fully constructed.

There is currently no stormwater infrastructure on the property, and runoff from the storage yard drains off site toward the eastern wetlands and Farmington River without any type of water quality treatment. The proposed project will introduce a new stormwater treatment train consisting of new landscaped and grassed areas, new planted trees, catch basins with 2-foot sumps, a hydrodynamic separator underground infiltration chambers, and a final water quality swale – wet swale as a CTDEEP primary stormwater practice.

The proposed stormwater management design was planned in accordance with the *Simsbury Stormwater Article*, Simsbury Center Code, and the CTDEEP *2004 Stormwater Manual*. The design meets Simsbury's stormwater requirements for redevelopment, peak rate, recharge volume, water quality, and conveyance. The proposed design will use a considerable amount of new trees planted throughout the site as a BMP incentive credit toward reducing the effective impervious area.

The hydrodynamic separator will pretreat stormwater runoff generated from the proposed impervious surfaces prior to it entering the receiving water quality swale and prior to the final discharge toward the wetland areas. A CDS[®] unit, manufactured by Contech Engineered Solutions, was selected and sized based on the contributing WQF, which is the peak-flow rate associated with the WQV. Furthermore, the combined retention volume provided in the infiltration chambers and water quality swale meets the CTDEEP WQV and GRV, which are volume requirements associated with the runoff generated by the first 1 inch of rainfall.

All supporting documentation and stormwater-related computations are attached to this report along with the *Hydraflow Hydrographs* model results for stormwater management and *Hydraflow Storm Sewers* model results for the proposed storm drainage system. Illustrative watershed maps for both existing and proposed conditions are also attached to this report.

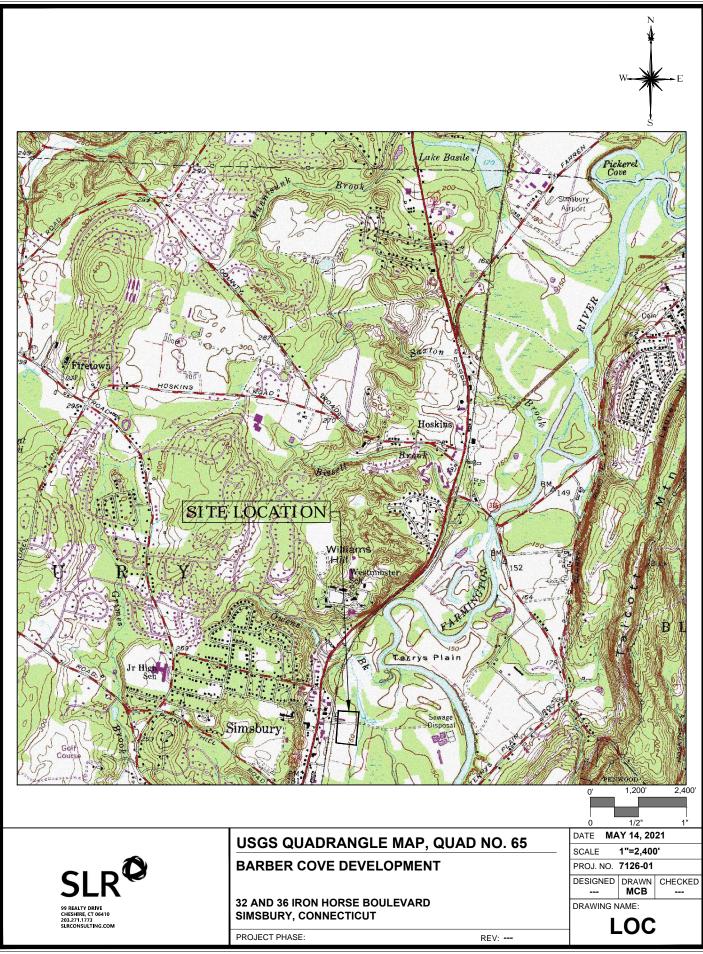
Attachments

Attachment A – United States Geological Survey (USGS) Location Map Attachment B – Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Attachment C – Natural Resources Conservation Service (NRCS) Hydrologic Soil Group Map Attachment D – Simsbury Stormwater Article Computations Attachment E – On-Site Soil Testing Results Attachment F – Storm Drainage Computations Attachment G – Water Quality Computations Attachment H – Hydrologic Analysis – Input Computations Attachment I – Hydrologic Analysis – Computer Model Results Attachment J – Watershed Maps

17126.00001.m1421.rpt

APPENDIX A

UNITED STATES GEOLOGICAL SURVEY (USGS) LOCATION MAP


Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Copyright SLR Consulting - 2021

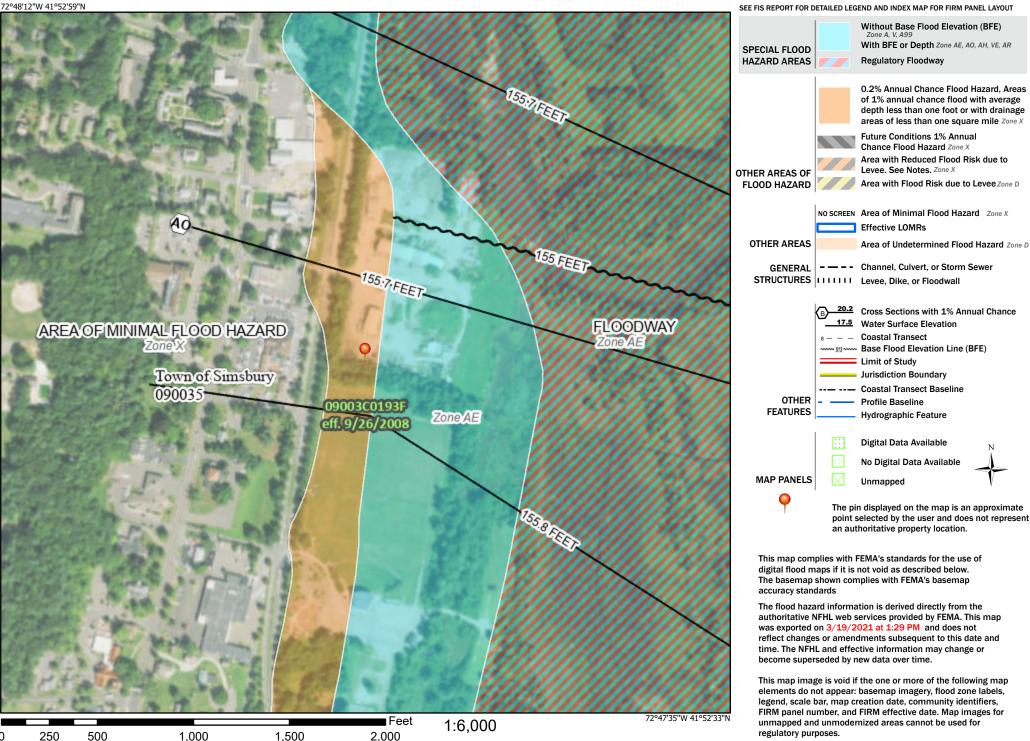
ATTACHMENT B

FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD INSURANCE RATE MAP

Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard


Simsbury, Connecticut

May 28, 2021

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Page 1 of 4	Issue Date: January 15, 2021	Effective Date	Date: June 3, 2021 Case No.: 20-01-1155P		o.: 20-01-1155P	LOMR-APP
	1	1	Follows Cond	itional Case No.:	15-01-1643R	
	Federa		gency Mar ington, D.C. 20		nt Agency	
		_	MAP REVISIO ON DOCUME			
	COMMUNITY AND REVISION INFORMATIO	N	PROJECT DE	SCRIPTION	BASIS OF RE	QUEST
COMMUNITY	Town of Simsbury Hartford County Connecticut		FILL		FLOODWAY HYDRAULIC ANAL UPDATED TOPOGF	
	COMMUNITY NO.: 090035					
IDENTIFIER	32 Iron Horse Boulevard		APPROXIMATE LAT Source: USGS Q		TUDE: 41.881, -72.797 DATUM: NAD 83	,
	ANNOTATED MAPPING ENCLOSURES			ANNOTATED STU	DY ENCLOSURES	
TYPE: FIRM TYPE: FIRM	TYPE: FIRM*NO.: 09003C0193FDATE: September 26, 2008DATE OF EFFECTIVE FLOOD INSURANCE STUDY:May 16, 2017TYPE: FIRMNO.: 09003C0331FDATE: September 26, 2008PROFILE: 116PFLOODWAY DATA TABLE: 24					
	ect changes to flooding sources affected by this n Insurance Rate Map	evision.				
	FLC	DODING SOURCE	AND REVISED REACI	4		
Farmington Rive	er - from approximately 5,670 feet downstream o	f Drake Hill Road to	o approximately 3,600 fe	eet downstream of E)rake Hill Road	
		SUMMARY C	OF REVISIONS			
Flooding Source Farmington Rive		Effective Floo BFEs* Floodway Zone AE Zone X (shade	BF Fic Zc	evised Flooding Es boodway one AE one X (shaded)	Increases YES NONE NONE NONE	S Decreases YES YES YES YES YES
* BFEs - Base F	Flood Elevations					
		DETERM	MINATION			
regarding a re a revision to t warranted.	nt provides the determination from the Depa equest for a Letter of Map Revision (LOMR he flood hazards depicted in the Flood Insu This document revises the effective NFIP m d by this LOMR for floodplain management) for the area des urance Study (FIS ap, as indicated	scribed above. Using S) report and/or Natic in the attached docu	g the information s nal Flood Insuran mentation. Pleas	submitted, we have de ice Program (NFIP) m se use the enclosed an	etermined that hap is nnotated map
questions about Clearinghouse, 3	on is based on the flood data presently available. T this document, please contact the FEMA Mapping a 3601 Eisenhower Avenue, Suite 500, Alexandria, VA a.gov/flood-insurance.	and Insurance eXcha	inge toll free at 1-877-336	-2627 (1-877-FEMA I the NFIP is available	MAP) or by letter addresse	
		ngineering Services				

Federal Insurance and Mitigation Administration

20-01-1155P

102-I-A-C

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This revision has met our criteria for removing an area from the 1-percent-annual-chance floodplain to reflect the placement of fill. However, we encourage you to require that the lowest adjacent grade and lowest floor (including basement) of any structure placed within the subject area be elevated to or above the Base (1-percent-annual-chance) Flood Elevation.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-01-1155P

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Kerry Bogdan Chief, Risk Analysis Branch U.S. Department of Homeland Security Federal Emergency Management Agency, Region I 99 High Street, Sixth Floor Boston, MA 02110 (617) 956-7576

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panels and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

20-01-1155P

Federal Emergency Management Agency

Washington, D.C. 20472

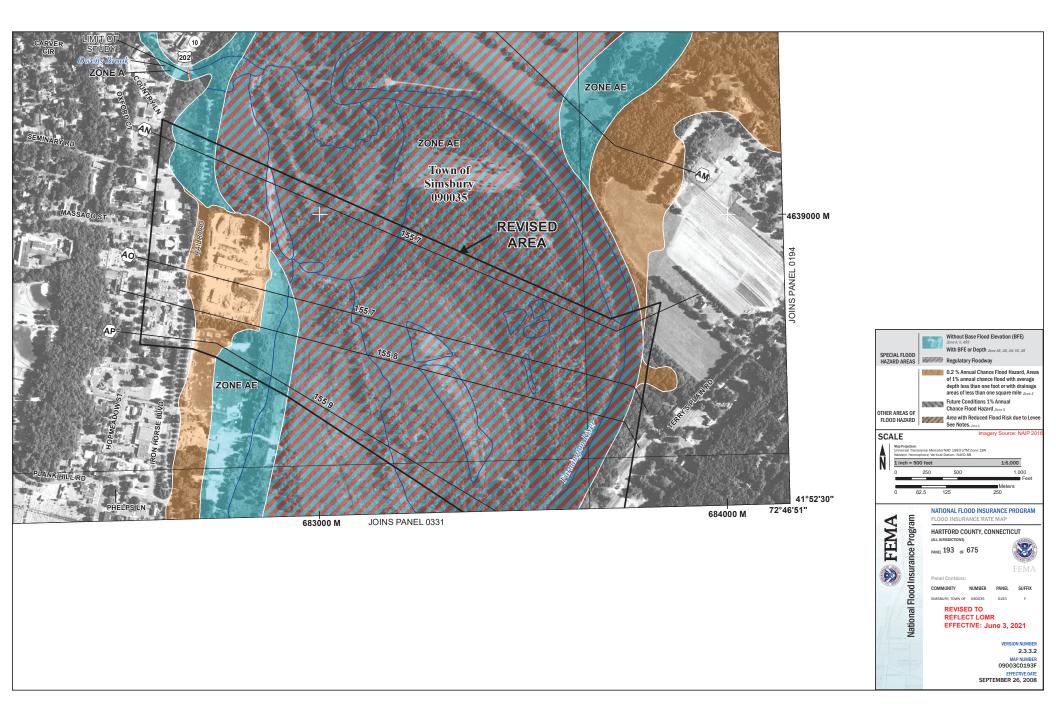
LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION

A notice of changes will be published in the *Federal Register*. This information also will be published in your local newspaper on or about the dates listed below, and through FEMA's Flood Hazard Mapping website at https://www.floodmaps.fema.gov/fhm/bfe status/bfe main.asp

LOCAL NEWSPAPER

Name: Hartford Courant


Dates: January 27, 2021 and February 3, 2021

Within 90 days of the second publication in the local newspaper, any interested party may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised flood hazard determination presented in this LOMR may be changed.

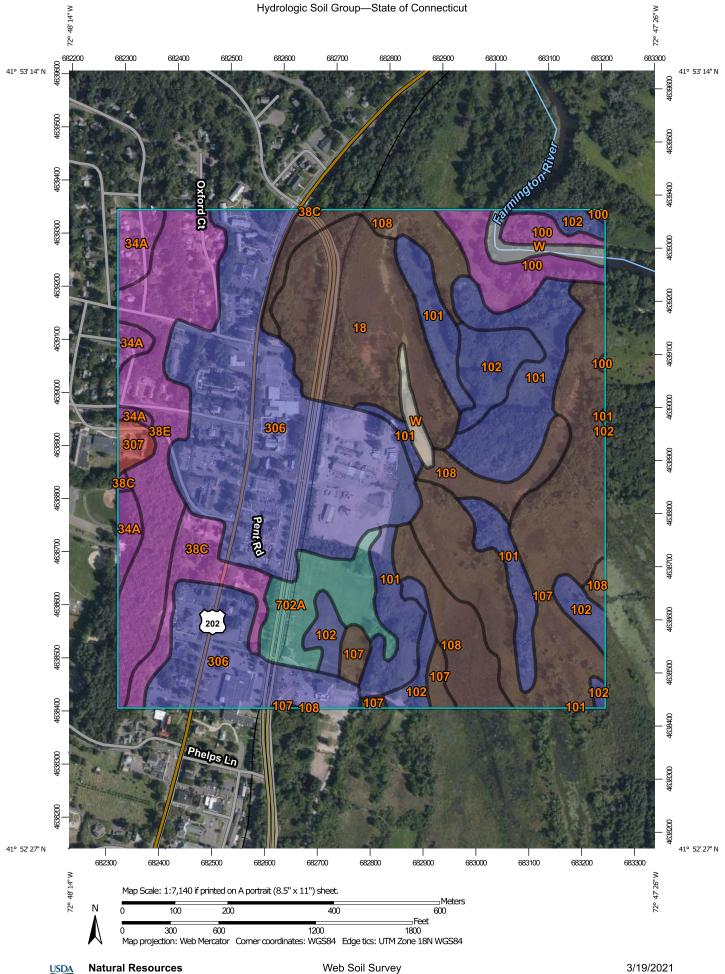
This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on our website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

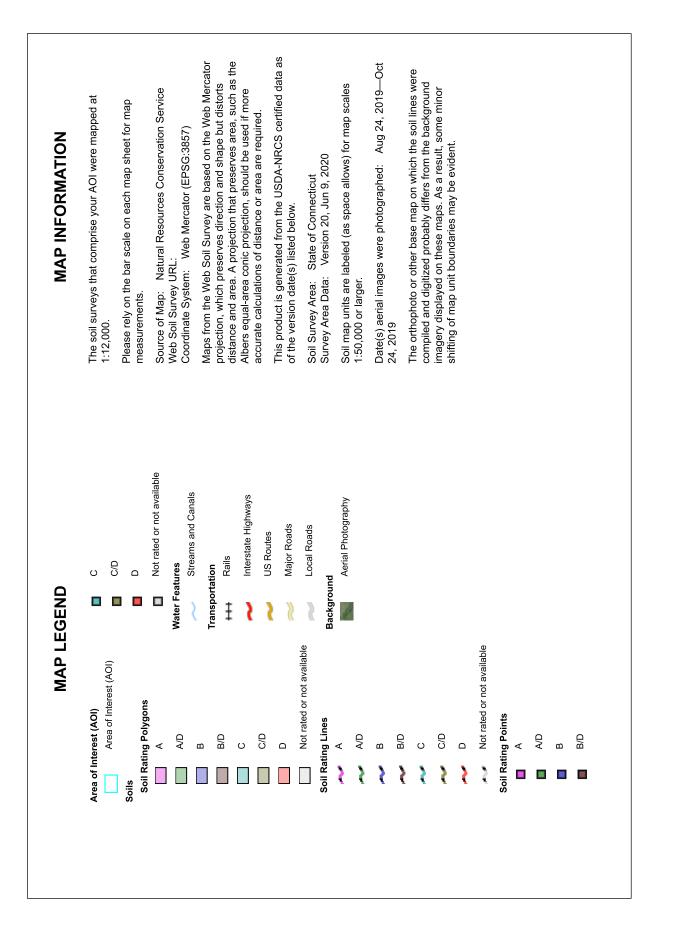
20-01-1155P

ATTACHMENT C

NATURAL RESOURCES CONSERVATION SERVICE (NRCS) HYDROLOGIC SOIL GROUP MAP


Drainage Report

Barber Cove Development


32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Conservation Service

3/19/2021 Page 2 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
	-	-		
18	Catden and Freetown soils, 0 to 2 percent slopes	B/D	21.3	9.9%
34A	Merrimac fine sandy loam, 0 to 3 percent slopes	A	5.2	2.4%
38C	Hinckley loamy sand, 3 to 15 percent slopes	А	6.3	2.9%
38E	Hinckley loamy sand, 15 to 45 percent slopes	A	20.3	9.5%
100	Suncook loamy fine sand	A	7.5	3.5%
101	Occum fine sandy loam	В	25.3	11.8%
102	Pootatuck fine sandy loam	В	11.8	5.5%
107	Limerick and Lim soils	B/D	30.9	14.4%
108	Saco silt loam	B/D	17.3	8.1%
306	Udorthents-Urban land complex	В	55.8	26.0%
307	Urban land	D	1.3	0.6%
702A	Tisbury silt loam, 0 to 3 percent slopes	С	8.1	3.8%
W	Water		3.4	1.6%
Totals for Area of Interest			214.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

ATTACHMENT D

SIMSBURY STORMWATER ARTICLE COMPUTATIONS

Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Borber Cove SLR # 141.17126.00 MILONE & Engineering Planning Landscape Architecture Environmental Science & Services JOB OF 4 SCALE 1 SHEET NO.___ 5/14/21 FAB DATE ____ CALCULATED BY CHECKED BY_ DATE Stormwater Management Design following the Performance Standards as described in the Simsbury Stormwater Arhide, Revision-2, dated September 28, 2012, and Simsbury Center Code Stormwater Quantity and Duality Requirements => · Location - Based Adjustment Barber Cove site is subject to the requirements Simsbury Center SC-5 zone. 0 Table 1.1 from Simsbury Stormuster Article: · Peak Zate : Peak rate reduction not required for the 100-year storm event. Provide safe over flow conveyance · Water Quality: 100 % · Recharge Volume : 50% Performance Standards 0 Redevelopment 1) 530,642 H2 = 13.56 acres Site area = 383,035 pt2 ~ 8.73 acres Existing impervious area = (on site) (buildings, compacted graveled reads, bituminous paved) 64.8% > 50% 8.79 13.56 Redevelopment credit = 50°6 Water Quality and Recharge at least 50% of the Volume for requirements post-development effective impervious aver

Engineering Planning Landscape Architecture Environmental Science & Services

JOB			
SHEET NO.	2	OF	4
CALCULATED B	3Y		

DATE _

SCALE _

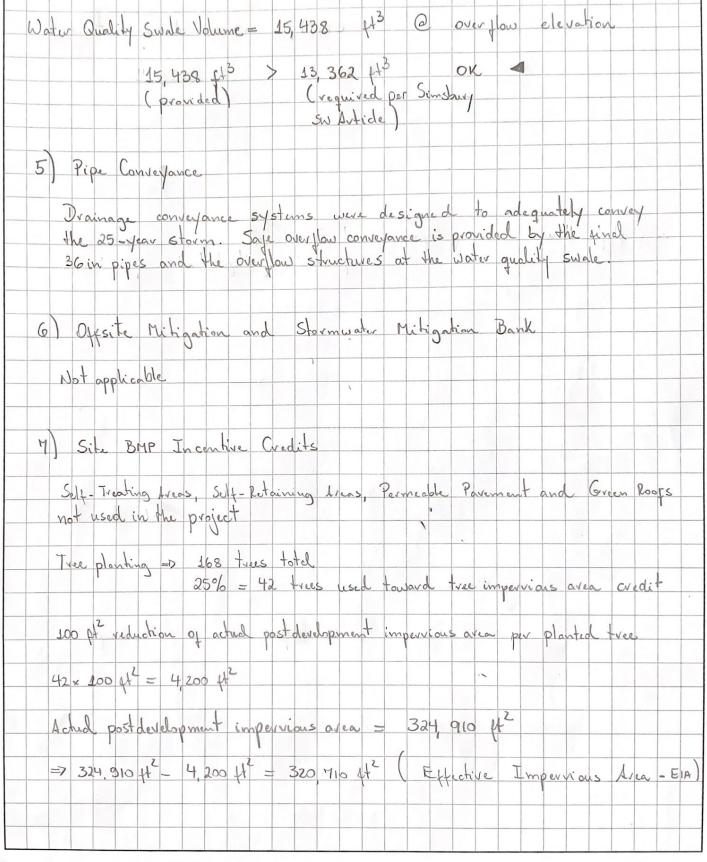
CHECKED BY

DATE _____

2) Pec	a K	Rat	e.																							
	The 100- pre Ref				1		V				1 - 1		0	alt.	TO	1	ne	U.LO	-00	14.50		-			-)-1 me	and
) Rech.		0				TI	1	4	2	1		5	have		ter		l.h.	le								
	B s																					omi	nav	t	soil	s	m
	- Pos (i) - Et 42						1			1		1.		1	A1 -												
	Rech	-																									
							32																Su	J A	v hic	le	
	Based Gallen					3 (sit	_ 1	BMP	Se		hior	L	Ma	trix)		U			-	/		nfe			
-	United	s c	000	ete	6.	alles	rieb	(24"	p	ofil	e)	7	``	ioli	me		*	34¢ 45) .45	jalle t	t ³	/ c	han	ber	-	
C	oncre	20	Jall	wieb	. 1	ofa	l,	Joh	AMI	2/	uni.	Ļ	:														

- galley volume =

340 gallone = 45.45 +43


JOB _ 3 OF 4 SHEET NO. SCALE CALCULATED BY DATE DATE CHECKED BY_

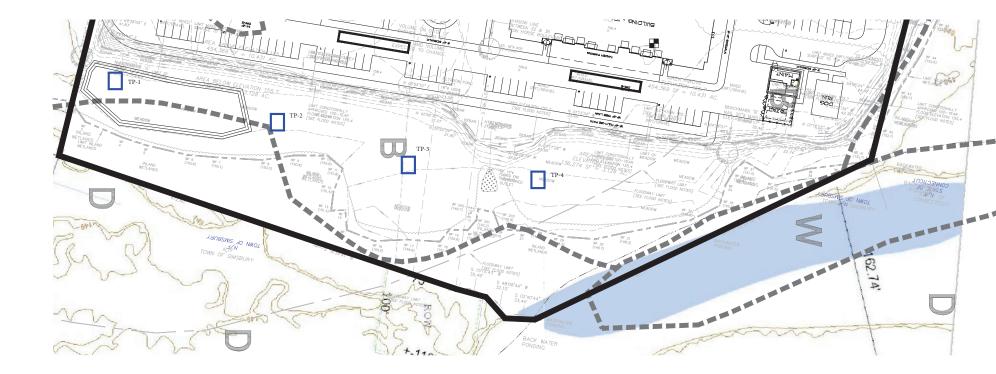
stone base and surrounding ston galley 32 ++3 (base 4 × 8 12 thick base = 32 -3-2 × 8 25.33 12 mide = 43 (3-2" 8 6" 12.67 sides wide -43 38.0 28 ft 3 (32+38) H3 × 40% voids 43 = 73.45 ft3 1.tot volu (45.45 + 28) unif => total number of galleries provided 160 -160 × 13.45 H3 11,752 413 2,339 ft3 = required per Simsbury (provided Sw Arhde OK Water Qualit 4 inch of rainfall at Impervious Area = $324, 910 \text{ gH}^2 \approx M.46$ vious Area (EIA) = $320,710 \text{ gH}^2$ Post- Devel acres opm Effective I pervious Wat Redevelopme FIA Oca

 					Bas	ed	6	redi	+		_	-								
				= 3	20,	110	ft?	×	1	inc	ch	x	0.	5	×	10				
				_	13.3	362	, p	13	-						per	Sim	sbu	y :	SW	Artic

SHEET NO.	4	OF	4	SCALE
CALCULATED	BY			DATE
CHECKED BY				DATE

ATTACHMENT E

ON-SITE SOIL TESTING RESULTS


Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Project:	Barber Cove	
Date:	3/31/21	
Inspector:	Peter Shea	
Elev. Of Grou	nd Surface:	151.5 (approx.)

Job No.:	17126.00001
Weather:	Overcast 60F
Test Pit No.:	TP-1

SOIL STRATUM ENCOUNTERED

From	То	Description of Soils
(inches)	(inches)	
0	3	Organic, roots, brown f-m Sand, some Silt (Fill)
3	21	Dark Brown m-c SAND, little Silt, trace gravel (Fill)
21	29	Reddish Brown f-m SAND, little Silt (Fill)
29	41	Brown m SAND, little Silt (moist)
41	48	Orange Brown m-c SAND, little Silt (Wet)
48	58	Brown f-c SAND, trace Silt (Wet)

Depth to Ledge:	NA		
Water Encountered at Depth:		47" at	t 8:45; 37" at 10:02; 37" at 10:23
Installed Observation Well at Depth:			

Comments: Permeability cores collected at 35" below grade (2 cores, TP-1 C-1 and TP-1 C-2)

Test Pit 1 at 8:45 am on March 31, 2021

Test Pit 1 at 10:23 am on March 31, 2021

Project:	Barber Cove	
Date:	3/31/21	
Inspector:	Peter Shea	
Elev. Of Grou	nd Surface:	151.5 (approx.)

Job No.:	17126.00001
Weather:	Overcast 60F
Test Pit No.:	TP-2

SOIL STRATUM ENCOUNTERED

From	То	Description of Soils
(inches)	(inches)	
0	7	Organic, roots, brown f-m Sand, some Silt (Fill)
7	25	Dark Brown f-m SAND little Silt, some gravel, trace brick/asphalt (Fill)
25	32	Orange Brown m-c SAND little Silt, trace cobble (Fill/Wet)
32	42	Brown m-c SAND, little Silt (Wet)

Depth to Ledge:	NA		
Water Encountered at Depth:		42.5″	at 9:21, 40.8" at 10:04, 41" at 10:22
Installed Observation Well at Depth:			NA

Comments: Permeability cores collected at 28" below grade (2 cores, TP-2 C-1 and TP-1 C-2)

Test Pit 2 at 9:21 am on March 31, 2021

Test Pit 2 at 9:25 am on March 31, 2021

Project:	Barber Cove	
Date:	3/31/21	
Inspector:	Peter Shea	
Elev. Of Grou	nd Surface:	151 (approx.)

Job No.:	17126.00001
Weather:	Overcast 60F
Test Pit No.:	TP-3

SOIL STRATUM ENCOUNTERED

From	To	Description of Soils
(inches)	(inches)	
0	11	Organic, roots, brown f-m Sand, some Silt (Fill)
11	31	Dark Brown f-m SAND, little Silt, some gravel, trace brick/asphalt
		(Fill/wet)
31	43	Orange Brown m-c SAND, little Silt, trace cobble (Fill/Wet)
<u> </u>		

Depth to Ledge:	NA		
Water Encountered	at Depth:	39" at	t 9:33, 35.52" at 9:40, 36" at 10:06
Installed Observation	n Well at Dep	oth:	NA

Comments: Permeability core collected at 36" below grade (TP-3 C-1)

Test Pit 3 at 9:33 am on March 31, 2021

Test Pit 3 at 9:35 am on March 31, 2021

Project:	Barber Cove	
Date:	3/31/21	
Inspector:	Peter Shea	
Elev. Of Grou	nd Surface:	150.5 (approx.)

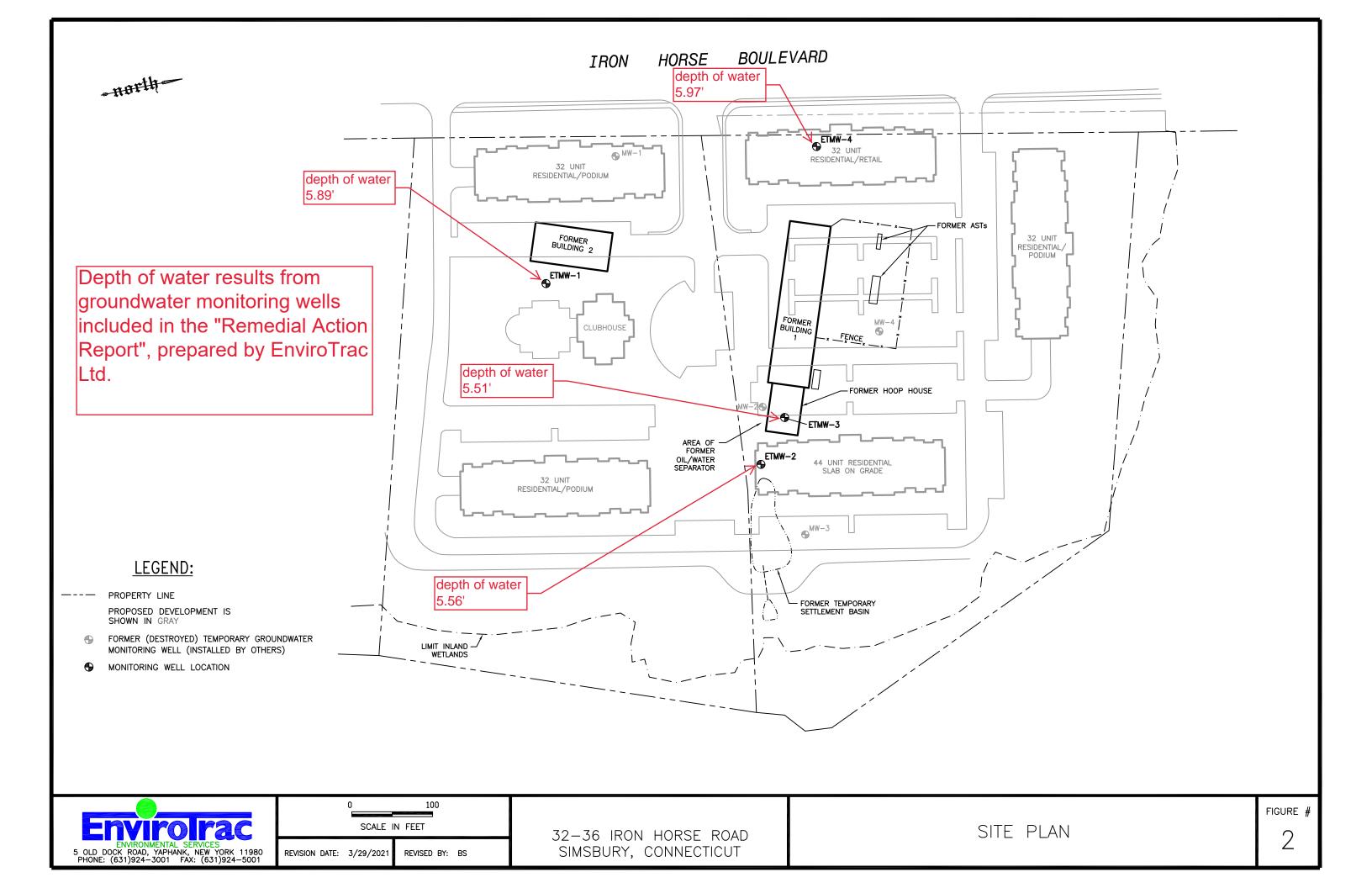
Job No.:	17126.00001
Weather:	Overcast 60F
Test Pit No.:	TP-4

SOIL STRATUM ENCOUNTERED

From (inches)	To (inches)	Description of Soils										
0	9	Organic, roots, brown f-m Sand, some Silt (Fill)										
9	13	Dark Brown f-m SAND little Silt, some gravel, trace brick/asphalt (Fill/Moist)										
13	18	Black Silty Sand little organics (wood debris), trace brick/asphalt (Fill/Wet)										
18	27	Red Brown f-m SAND, some Silt, little Gravel, little Cobbles (Fill/Wet)										
27	42	Brown f-m SAND, some Silt, little organics (wood debris), trace fill (metal, brick, glass) (Wet)										

Depth to Ledge:	NA	NA								
Water Encountered	at Depth:	40" at	: 9:46, 40" at 9:55, 40" at 10:15							
Installed Observation	n Well at Dep	oth:	NA							

Comments: Permeability core collected at 18" below grade (TP-4 C-1)



Test Pit 4 at 9:46 am on March 31, 2021

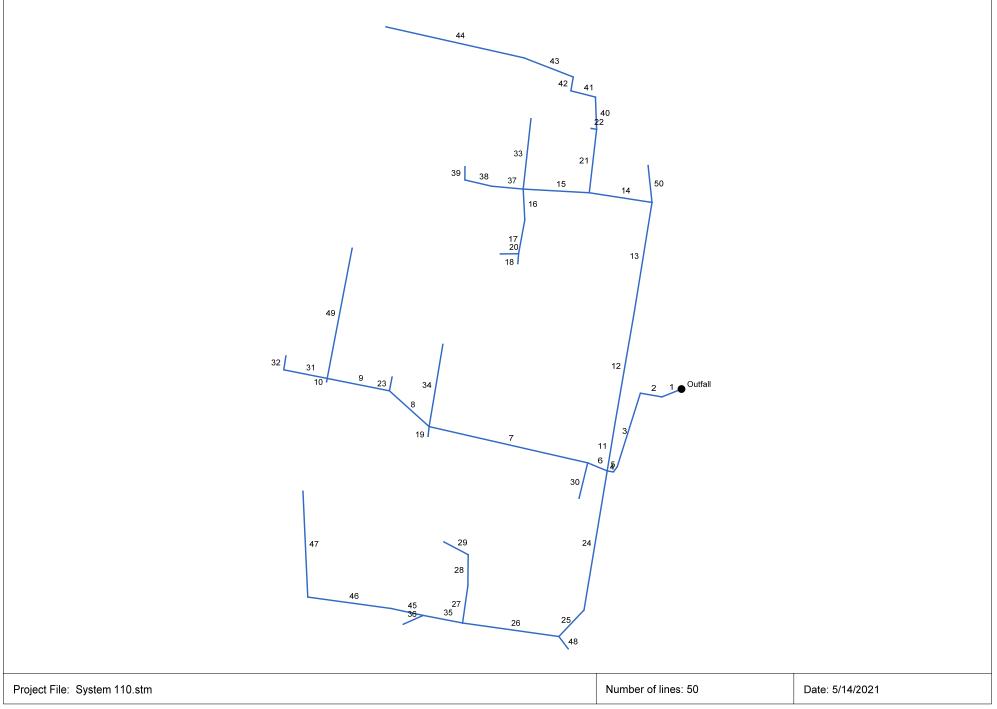
Test Pit 4 at 9:47 am on March 31, 2021

ATTACHMENT F

STORM DRAINAGE COMPUTATIONS

Drainage Report

Barber Cove Development


32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Project:	Barber Cove			By:	AWG	Date:	5/13/21
Location:	32 & 36 Iron Ho	orse Boulevaro	d, Simsbury, CT			Date:	
Basin Name	Impervious Area C=0.9 (sf)	Grassed Area C=0.3 (sf)	Wooded Area C=0.2 (sf)	Total Area (sf)	Total Area (ac)	Weighted C	Tc (min)
			System 110				
CCB 8	13995	14445	0	28440	0.65	0.60	5.0
CCB 9	1188	51	0	1238	0.03	0.88	5.0
CCB 10	6770	266	0	7036	0.16	0.88	5.0
CCB 11	10964	4418	0	15382	0.35	0.73	5.0
CLCB 13	3503	1338	0	4841	0.11	0.73	5.0
BLD TO MH 13A	17242	0	0	17242	0.40	0.90	5.0
CCB 15	765	398	0	1163	0.03	0.69	5.0
CCB 16	1011	0	0	1011	0.02	0.90	5.0
CCB 17	4963	1001	0	5964	0.12	0.80	5.0
CCB 18	7370	10891	0	18261	0.42	0.54	5.0
CLCB 19A			0				5.0
	4742	1839		6581	0.15	0.73	
CCB 20	3885	2598	0	6483	0.15	0.66	5.0
CCB 21	2286	448	0	2733	0.06	0.80	5.0
CCB 22	7107	3417	0	10525	0.24	0.71	5.0
CCB 23	10313	10364	0	20676	0.47	0.60	5.0
BLD TO MH 24A	34531	0	0	34531	0.79	0.90	5.0
CCB 25	8130	2901	0	11031	0.25	0.74	5.0
CCB 26	6957	563	0	7520	0.17	0.86	5.0
BLD TO MH 27	5768	0	0	5768	0.13	0.90	6.0
BLD TO MH 27A	17311	0	0	17311	0.40	0.90	7.0
BLD TO MH 28B	8566	0	0	8566	0.20	0.90	8.0
CCB 28	12891	8507	0	21398	0.49	0.66	9.0
CCB 29	16303	6467	0	22770	0.52	0.73	10.0
CCB 30	2765	2412	0	5177	0.12	0.62	11.0
CCB 31	2773	2567	0	5340	0.12	0.61	12.0
BLD TO MH 32A	8673	0	0	8673	0.20	0.90	13.0
CCB 33	14802	20936	0	35738	0.82	0.55	14.0
CCB 34	3258	1346	0	4603	0.11	0.72	15.0
CCB 35	6892	5082	0	11974	0.27	0.65	16.0
CCB 36	4479	<u>111</u> 2773	0	4590	0.11	0.89	17.0
CCB 37 CCB 38	3352 3949	1662	0	6125 5611	0.14 0.13	0.63 0.72	18.0 19.0
CCB 38	6797	2985	0	9782	0.13	0.72	20.0
CCB 38D	6271	1495	0	7766	0.22	0.72	20.0
CCB 39	3947	610	0	4557	0.10	0.82	21.0
CCB 40	2809	4881	0	7691	0.10	0.52	23.0
CCB 41	8158	3542	0	11700	0.18	0.52	20.0
CCB 43	13567	14295	0	27861	0.27	0.72	21.0

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Line		Alignr	ment			Flow	/ Data					Physical	Data			Line ID	
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
			457.050					5.0	4.40.00	1.00	1.40.40		0.	0.040	0.50	457.00	550 / MUO
1	End	30.000	157.950		0.00	0.00	0.00	5.0	149.00	1.33	149.40	36	Cir	0.012	0.58	157.00	FES 1-MH 2
2	1	31.000	32.003	MH	0.00	0.00	0.00	5.0	149.40	1.29	149.80	36	Cir	0.012	0.99	159.20	MH 2-MH 3
3	2	110.000	-82.502	МН	0.00	0.00	0.00	5.0	149.80	1.09	151.00	36	Cir	0.012	0.37	159.50	MH 2A-MH 6
4	3	9.000	18.500	мн	0.00	0.00	0.00	5.0	151.00	1.11	151.10	36	Cir	0.012	0.91	159.30	MH 6-MH 7
5	4	9.000	63.110	Comb	0.00	0.17	0.86	5.0	151.10	1.11	151.20	36	Cir	0.012	2.25	159.10	MH 7-CB 26
6	5	30.000	13.597	мн	0.00	0.13	0.90	5.0	151.20	1.33	151.60	24	Cir	0.012	1.00	159.90	CB 26-MH 27
7	6	231.000	-9.745	Comb	0.00	0.49	0.66	5.0	151.60	0.74	153.30	24	Cir	0.012	2.25	160.00	MH 27-CB 28
8	7	76.000	29.258	Comb	0.00	0.12	0.62	5.0	153.30	0.53	153.70	24	Cir	0.012	1.32	160.00	CB 28-CB 30
9	8	90.000	-30.888	мн	0.00	0.00	0.00	5.0	154.00	0.78	154.70	18	Cir	0.012	1.00	160.90	CB 30-MH 32
10	9	5.000	-89.212	мн	0.00	0.20	0.90	5.0	157.00	4.00	157.20	12	Cir	0.012	1.00	160.80	MH 32-MH 32A
11	5	71.000	90.251	Comb	0.00	0.65	0.60	5.0	151.20	0.56	151.60	30	Cir	0.012	0.50	158.10	CB 26-CB 8
12	11	161.000	0.452	Comb	0.00	0.03	0.88	5.0	151.60	0.50	152.40	30	Cir	0.012	0.50	160.70	CB 8-CB 9
13	12	156.000	-0.632	Comb	0.00	0.16	0.88	5.0	152.40	0.51	153.20	30	Cir	0.012	1.50	159.20	CB 9-CB 10
14	13	90.000	-90.336	мн	0.00	0.00	0.00	5.0	153.20	0.56	153.70	30	Cir	0.012	1.00	159.90	CB 10-MH 12
15	14	94.000	-5.607	мн	0.00	0.00	0.00	5.0	153.70	0.85	154.50	24	Cir	0.012	1.00	160.30	MH 12-MH 19
16	15	44.000	-96.107	Grate	0.00	0.15	0.73	5.0	154.80	2.05	155.70	15	Cir	0.012	0.50	160.00	MH 19-CB 19A
17	16	49.000	13.314	МН	0.00	0.00	0.00	5.0	155.70	1.43	156.40	15	Cir	0.012	0.98	160.30	CB 19A-MH 24
18	17	14.000	-6.272	мн	0.00	0.79	0.90	5.0	156.80	2.86	157.20	15	Cir	0.012	1.00	160.40	MH 24-MH 24A
19	7	14.000	-97.189		0.00	0.20	0.90	5.0	156.80	2.86	157.20	12	Cir	0.012	1.00	160.10	CB 28-MH 28B
20	17				0.00		0.30					12		0.012	1.00		
		26.000	78.966	Comb		0.25		5.0	156.70	0.38	156.80		Cir			160.00	MH 24-CB 25
21	14	91.000	87.807		0.00	0.11	0.73	5.0	153.70	0.55	154.20	18	Cir	0.012	2.10	159.90	MH 12-CB 13
22	21	8.000	-87.857		0.00	0.40	0.90	5.0	156.70	6.25	157.20	12	Cir	0.012	1.00	160.20	CB 13-MH 13A
23	8	20.000	58.642	Comb	0.00	0.12	0.61	5.0	156.60	1.00	156.80	12	Cir	0.012	1.00	160.00	CB 30-CB 31
Projec	t File: Sys	tem 110.stm	1									Number	of lines: 50			Date: 5	/14/2021

Line		Alignr	ment			Flow	/ Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	5	201.000	-89.650	Grate	0.00	0.11	0.89	5.0	151.20	0.60	152.40	18	Cir	0.012	0.92	159.70	CB 26-CB 36
25	24	52.000	34.066	Comb	0.00	0.14	0.63	5.0	152.40	0.58	152.70	18	Cir	0.012	1.48	158.60	CB 36-CB 37
26	25	138.000	54.537	мн	0.00	0.00	0.00	5.0	152.70	0.51	153.40	18	Cir	0.012	1.00	160.40	CB 37-MH 38A
27	26	54.000	90.057	Grate	0.00	0.22	0.72	5.0	155.70	1.11	156.30	12	Cir	0.012	0.50	160.00	MH 38A-CB 38B
28	27	44.000	-7.614	мн	0.00	0.00	0.00	5.0	156.30	0.68	156.60	12	Cir	0.012	0.91	160.70	CB 38B-MH 38C
29	28	39.000	-62.686	Comb	0.00	0.18	0.78	5.0	156.60	0.77	156.90	12	Cir	0.012	1.00	160.10	MH 38C-CB 38D
30	6	52.000	-98.979	мн	0.00	0.40	0.90	5.0	156.60	4.42	158.90	12	Cir	0.012	1.00	161.40	MH 27-MH 27A
31	9	63.000	0.000	Comb	0.00	0.11	0.72	5.0	155.70	1.11	156.40	12	Cir	0.012	1.50	159.80	MH 32-CB 34
32	31	20.000	87.486	Comb	0.00	0.27	0.65	5.0	156.40	1.00	156.60	12	Cir	0.012	1.00	159.80	CB 34-CB 35
33	15	101.000	93.052	Comb	0.00	0.15	0.66	5.0	156.00	0.69	156.70	12	Cir	0.012	1.00	159.90	MH 19-CB 20
34	7	119.000	86.550	Comb	0.00	0.52	0.73	5.0	155.50	1.09	156.80	12	Cir	0.012	1.00	160.00	CB 28-CB 29
35	26	57.000	2.967	Comb	0.00	0.10	0.82	5.0	153.60	0.53	153.90	15	Cir	0.012	0.94	159.40	MH 38A-CB 39
36	35	31.000	-35.082	Comb	0.00	0.18	0.52	5.0	155.80	0.65	156.00	12	Cir	0.012	1.00	159.20	CB 39-CB 40
37	15	45.000	2.056	Comb	0.00	0.06	0.80	5.0	155.00	0.67	155.30	15	Cir	0.012	0.50	159.80	MH 19-CB 21
38	37	39.000	7.904	Comb	0.00	0.24	0.71	5.0	155.30	0.51	155.50	15	Cir	0.012	1.47	159.10	CB 21-CB 22
39	38	19.000	77.284	Grate	0.00	0.47	0.60	5.0	155.50	0.53	155.60	15	Cir	0.012	1.00	159.10	CB 22-CB 23
40	21	46.000	-8.703	мн	0.00	0.00	0.00	5.0	154.20	0.65	154.50	15	Cir	0.012	0.97	160.40	CB 13-MH 14
41	40	36.000	-73.638		0.00	0.03	0.69	5.0	154.50	0.56	154.70	15	Cir	0.012	1.50	159.90	MH 14-CB 15
42	41	20.000	85.142	Comb	0.00	0.02	0.90	5.0	154.70	1.00	154.90	12	Cir	0.012	1.47	159.90	CB 15-CB 16
43	42	75.000	-78.016		0.00	0.02	0.80	5.0	154.90	0.53	155.30	12	Cir	0.012	0.50	159.70	CB 15-CB 17
43 44	42				0.00	0.14	0.54	5.0		0.50		12	Cir	0.012	1.00		
		201.000		Comb					155.30		156.30					159.50	CB 17-CB 18
45	35	47.000	1.235	Comb	0.00	0.18	0.52	5.0	153.90	0.64	154.20	15	Cir	0.012	0.50	159.40	CB 39-CB 41
46	45	119.000	-4.384	MH	0.00	0.00	0.00	5.0	154.50	0.59	155.20	12	Cir	0.012	0.99	161.00	CB 41-MH 42
	t Filer Orm											Numera	of lines: 50			Data: 5	(14/2024
Projec	THE Sys	tem 110.stm										Number	of lines: 50			Date: 5	\$14/2021

Line		Aligni	ment			Flov	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)		Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
47	46	151.000	79.572	Comb	0.00	0.27	0.72	5.0	155.20	0.53	156.00	12	Cir	0.012	1.00	159.20	MH 42-CB 43
48	25	22.000	-80.490	Comb	0.00	0.13	0.72	5.0	155.20	0.91	155.40	12	Cir	0.012	1.00	158.60	CB 37-CB 38
49	9	189.000	89.494	Comb	0.00	0.82	0.55	5.0	154.70	0.53	155.70	15	Cir	0.012	1.00	159.00	MH 32-CB 33
50	13	53.000	-15.183	Comb	0.00	0.35	0.73	5.0	154.70	0.75	155.10	12	Cir	0.012	1.00	158.30	CB 10-CB 11
Project	File: Sys	tem 110.stm										Number	of lines: 50			Date: 5	/14/2021

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	(C	Тс		Rain	Total	Сар	Vel	Pipe	•	Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
ine	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	30.000	0.00	9.48	0.00	0.00	6.82	5.0	9.6	6.6	45.16	83.43	6.67	36	1.33	149.00	149.40	152.00	152.00	151.71	157.00	FES 1-MH 2
2	1	31.000	0.00	9.48	0.00	0.00	6.82	5.0	9.5	6.7	45.35	82.07	6.63	36	1.29	149.40	149.80	152.43	152.46	157.00	159.20	MH 2-MH 3
3	2	110.000	0.00	9.48	0.00	0.00	6.82	5.0	9.3	6.7	46.00	75.46	7.04	36	1.09	149.80	151.00	153.18	153.40	159.20	159.50	MH 2A-MH 6
4	3	9.000	0.00	9.48	0.00	0.00	6.82	5.0	9.3	6.8	46.05	76.16	7.53	36	1.11	151.00	151.10	153.73	153.31	159.50	159.30	MH 6-MH 7
5	4	9.000	0.17	9.48	0.86	0.15	6.82	5.0	9.2	6.8	46.09	76.16	8.26	36	1.11	151.10	151.20	153.31	153.41	159.30	159.10	MH 7-CB 26
6	5	30.000	0.13	3.38	0.90	0.12	2.39	5.0	7.5	7.5	17.92	28.29	5.72	24	1.33	151.20	151.60	153.41	153.56	159.10	159.90	CB 26-MH 27
7	6	231.000	0.49	2.85	0.66	0.32	1.92	5.0	6.8	7.9	15.05	21.02	5.31	24	0.74	151.60	153.30	154.07	154.83	159.90	160.00	MH 27-CB 28
8	7	76.000	0.12	1.64	0.62	0.07	1.03	5.0	6.3	8.1	8.39	17.78	2.67	24	0.53	153.30	153.70	156.02	156.11	160.00	160.00	CB 28-CB 30
9	8	90.000	0.00	1.40	0.00	0.00	0.89	5.0	6.0	8.3	7.38	10.03	4.18	18	0.78	154.00	154.70	156.26	156.64	160.00	160.90	CB 30-MH 32
10	9	5.000	0.20	0.20	0.90	0.18	0.18	5.0	5.0	9.0	1.61	7.72	5.75	12	4.00	157.00	157.20	157.31	157.74	160.90	160.80	MH 32-MH 32
11	5	71.000	0.65	4.42	0.60	0.39	3.24	5.0	8.7	7.0	22.52	33.35	5.81	30	0.56	151.20	151.60	153.41	153.21	159.10	158.10	CB 26-CB 8
12	11	161.000	0.03	3.77	0.88	0.03	2.85	5.0	8.3	7.1	20.30	31.32	6.26	30	0.50	151.60	152.40	153.21	153.93	158.10	160.70	CB 8-CB 9
13	12	156.000	0.16	3.74	0.88	0.14	2.82	5.0	7.9	7.3	20.59	31.82	6.52	30	0.51	152.40	153.20	153.93	154.74	160.70	159.20	CB 9-CB 10
14	13	90.000	0.00	3.23	0.00	0.00	2.42	5.0	7.7	7.4	17.97	33.12	5.92	30	0.56	153.20	153.70	154.74	155.13	159.20	159.90	CB 10-MH 12
15	14	94.000	0.00	2.11	0.00	0.00	1.60	5.0	5.5	8.6	13.82	22.60	5.96	24	0.85	153.70	154.50	155.13	155.84	159.90	160.30	MH 12-MH 19
16	15	44.000	0.15	1.19	0.73	0.11	1.01	5.0	5.3	8.8	8.81	10.01	7.78	15	2.05	154.80	155.70	155.84	156.85	160.30	160.00	MH 19-CB 19
17	16	49.000	0.00	1.04	0.00	0.00	0.90	5.0	5.2	8.8	7.93	8.36	6.80	15	1.43	155.70	156.40	156.85	157.51	160.00	160.30	CB 19A-MH 2
18	17	14.000	0.79	0.79	0.90	0.71	0.71	5.0	5.0	9.0	6.38	11.82	7.41	15	2.86	156.80	157.20	157.51	158.22	160.30	160.40	MH 24-MH 24
19	7	14.000	0.20	0.20	0.90	0.18	0.18	5.0	5.0	9.0	1.61	6.52	5.31	12	2.86	156.80	157.20	157.14	157.74	160.00	160.10	CB 28-MH 28
20	17	26.000	0.25	0.25	0.74	0.19	0.19	5.0	5.0	9.0	1.66	2.39	2.53	12	0.38	156.70	156.80	157.51	157.55	160.30	160.00	MH 24-CB 25
21	14	91.000	0.11	1.12	0.73	0.08	0.82	5.0	7.3	7.6	6.21	8.43	4.38	18	0.55	153.70	154.20	155.13	155.16	159.90	159.90	MH 12-CB 13
22	21	8.000	0.40	0.40	0.90	0.36	0.36	5.0	5.0	9.0	3.23	9.65	8.02	12	6.25	156.70	157.20	157.10	157.97	159.90	160.20	CB 13-MH 13
Proie	ct File:	System	 110.str	 n												Numbe	r of lines: 5	60		Run Da	te: 5/14/2	021

NOTES:Intensity = 42.82 / (Inlet time + 3.80) ^ 0.72; Return period =Yrs. 25 ; c = cir e = ellip b = box

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	(C	Тс		Rain	Total	Сар	Vel	Pipe)	Invert El	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
Line	То	1	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
23	8	20.000	0.12	0.12	0.61	0.07	0.07	5.0	5.0	9.0	0.66	3.86	3.24	12	1.00	156.60	156.80	156.88	157.14	160.00	160.00	CB 30-CB 31
24	5	201.000	0.11	1.51	0.89	0.10	1.04	5.0	8.4	7.1	7.38	8.79	4.17	18	0.60	151.20	152.40	153.41	154.25	159.10	159.70	CB 26-CB 36
25	24	52.000	0.14	1.40	0.63	0.09	0.94	5.0	8.2	7.2	6.77	8.64	3.83	18	0.58	152.40	152.70	154.50	154.69	159.70	158.60	CB 36-CB 37
26	25	138.000	0.00	1.13	0.00	0.00	0.76	5.0	7.5	7.5	5.71	8.10	3.23	18	0.51	152.70	153.40	155.03	155.37	158.60	160.40	CB 37-MH 38A
27	26	54.000	0.22	0.40	0.72	0.16	0.30	5.0	5.5	8.7	2.59	4.07	4.98	12	1.11	155.70	156.30	156.28	156.99	160.40	160.00	MH 38A-CB 38
28	27	44.000	0.00	0.18	0.00	0.00	0.14	5.0	5.2	8.8	1.24	3.19	2.79	12	0.68	156.30	156.60	156.99	157.07	160.00	160.70	CB 38B-MH 38
29	28	39.000	0.18	0.18	0.78	0.14	0.14	5.0	5.0	9.0	1.26	3.38	3.46	12	0.77	156.60	156.90	157.07	157.37	160.70	160.10	MH 38C-CB 38
30	6	52.000	0.40	0.40	0.90	0.36	0.36	5.0	5.0	9.0	3.23	8.11	7.36	12	4.42	156.60	158.90	157.04	159.67	159.90	161.40	MH 27-MH 27
31	9	63.000	0.11	0.38	0.72	0.08	0.25	5.0	5.2	8.9	2.26	4.07	3.48	12	1.11	155.70	156.40	156.91	157.06	160.90	159.80	MH 32-CB 34
32	31	20.000	0.27	0.27	0.65	0.18	0.18	5.0	5.0	9.0	1.57	3.86	2.08	12	1.00	156.40	156.60	157.45	157.47	159.80	159.80	CB 34-CB 35
33	15	101.000	0.15	0.15	0.66	0.10	0.10	5.0	5.0	9.0	0.89	3.21	3.29	12	0.69	156.00	156.70	156.36	157.09	160.30	159.90	MH 19-CB 20
34	7	119.000	0.52	0.52	0.73	0.38	0.38	5.0	5.0	9.0	3.41	4.03	5.44	12	1.09	155.50	156.80	156.20	157.59	160.00	160.00	CB 28-CB 29
35	26	57.000	0.10	0.73	0.82	0.08	0.46	5.0	7.2	7.7	3.55	5.08	2.89	15	0.53	153.60	153.90	155.54	155.68	160.40	159.40	MH 38A-CB 39
36	35	31.000	0.18	0.18	0.52	0.09	0.09	5.0	5.0	9.0	0.84	3.10	3.19	12	0.65	155.80	156.00	156.16	156.38	159.40	159.20	CB 39-CB 40
37	15	45.000	0.06	0.77	0.80	0.05	0.50	5.0	5.3	8.8	4.38	5.71	4.98	15	0.67	155.00	155.30	155.84	156.15	160.30	159.80	MH 19-CB 21
38	37	39.000	0.24	0.71	0.71	0.17	0.45	5.0	5.2	8.9	4.01	5.01	4.53	15	0.51	155.30	155.50	156.15	156.35	159.80	159.10	CB 21-CB 22
39	38	19.000	0.47	0.47	0.60	0.28	0.28	5.0	5.0	9.0	2.53	5.08	2.06	15	0.53	155.50	155.60	156.82	156.84	159.10	159.10	CB 22-CB 23
40	21	46.000	0.00	0.61	0.00	0.00	0.38	5.0	7.0	7.8	2.93	5.65	3.56	15	0.65	154.20	154.50	155.16	155.19	159.90	160.40	CB 13-MH 14
41	40	36.000	0.03	0.61	0.69	0.02	0.38	5.0	6.7	7.9	2.98	5.21	4.28	15	0.56	154.50	154.70	155.19	155.39	160.40	159.90	MH 14-CB 15
42	41	20.000	0.02	0.58	0.90	0.02	0.36	5.0	6.6	7.9	2.83	3.86	4.77	12	1.00	154.70	154.90	155.39	155.62	159.90	159.90	CB 15-CB 16
43	42	75.000	0.14	0.56	0.80	0.11	0.34	5.0	6.3	8.1	2.75	2.82	4.09	12	0.53	154.90	155.30	155.70	156.10	159.90	159.70	CB 15-CB 17
44	43	201.000	0.42	0.42	0.54	0.23	0.23	5.0	5.0	9.0	2.03	2.72	3.35	12	0.50	155.30	156.30	156.23	156.91	159.70	159.50	CB 17-CB 18
Proie	ct File:	: System	110.str	 n												Numbe	r of lines: 5	60		Run Da	te: 5/14/2	021

NOTES:Intensity = 42.82 / (Inlet time + 3.80) ^ 0.72; Return period =Yrs. 25 ; c = cir e = ellip b = box

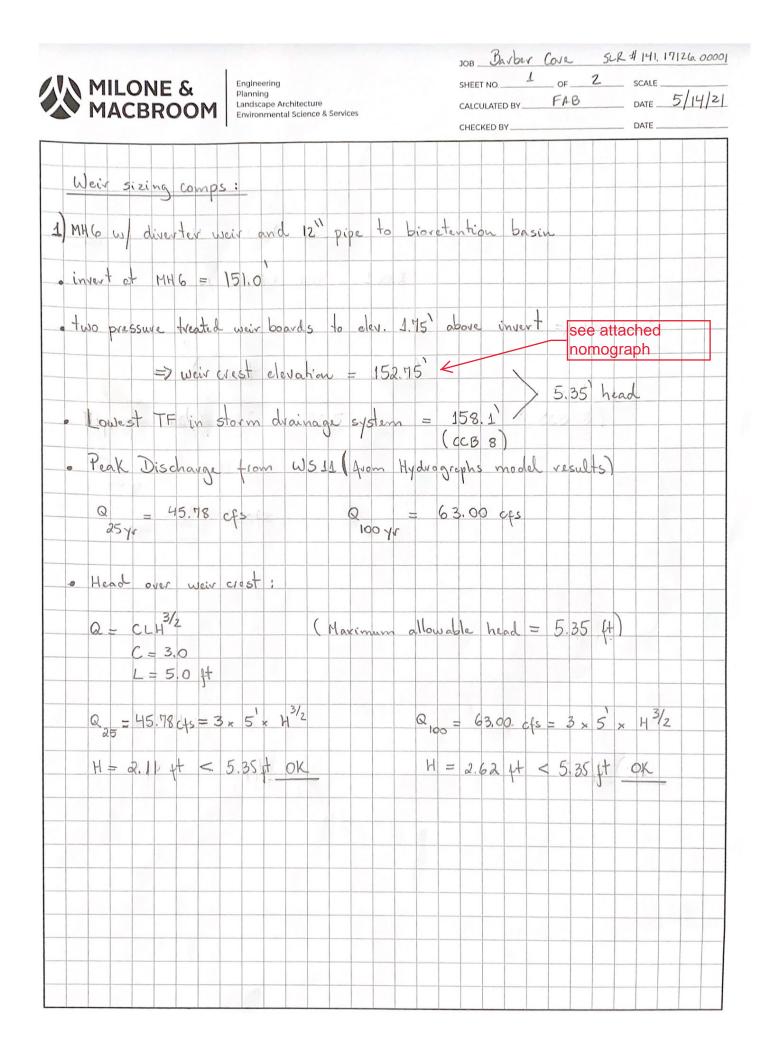
Storm Sewer Tabulation

n	Len	Drng A	rea	Rnoff	Area x	(C	Тс					Vel	Pipe	•	Invert Ele	ev	HGL Ele	v	Grnd / R	im Elev	Line ID
То	-	Incr	Total		Incr	Total	Inlet	Syst	-(1)	tiow	tull		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
35	47.000	0.18	0.45	0.52	0.09	0.29	5.0	6.7	7.9	2.27	5.59	1.85	15	0.64	153.90	154.20	155.81	155.86	159.40	159.40	CB 39-CB 41
45	119.000	0.00	0.27	0.00	0.00	0.19	5.0	5.8	8.4	1.63	2.96	2.16	12	0.59	154.50	155.20	155.88	156.08	159.40	161.00	CB 41-MH 42
46	151.000	0.27	0.27	0.72	0.19	0.19	5.0	5.0	9.0	1.74	2.81	3.04	12	0.53	155.20	156.00	156.15	156.56	161.00	159.20	MH 42-CB 43
25	22.000	0.13	0.13	0.72	0.09	0.09	5.0	5.0	9.0	0.84	3.68	3.41	12	0.91	155.20	155.40	155.52	155.78	158.60	158.60	CB 37-CB 38
9	189.000	0.82	0.82	0.55	0.45	0.45	5.0	5.0	9.0	4.05	5.09	3.30	15	0.53	154.70	155.70	156.91	157.54	160.90	159.00	MH 32-CB 33
13	53.000	0.35	0.35	0.73	0.26	0.26	5.0	5.0	9.0	2.29	3.35	4.43	12	0.75	154.70	155.10	155.31	155.75	159.20	158.30	CB 10-CB 11
	Sustem	110 str													Numba	r of lines: 5			Pup Da	to: 5/14/2	
ect File:	System	110.str	n												Numbe	r of lines: 5	00		Run Da	ite: 5/14/2	JZT
	To 35 45 25 9 13	To (ft) 35 47.000 45 119.000 46 151.000 25 22.000 9 189.000 13 53.000	To. Incr (nt) 35 47.000 0.18 45 119.000 0.00 46 151.000 0.27 25 22.000 0.13 9 189.000 0.82 13 53.000 0.35	To Line Incr (ft) Total (ac) 35 47.000 0.18 0.45 45 119.000 0.00 0.27 46 151.000 0.27 0.27 25 22.000 0.13 0.13 9 189.000 0.82 0.82	Ton Incr Total coeff 35 47.000 0.18 0.45 0.52 45 119.000 0.00 0.27 0.00 46 151.000 0.27 0.27 0.72 25 22.000 0.13 0.13 0.72 9 189.000 0.82 0.82 0.55 13 53.000 0.35 0.35 0.73	To Incr Total coeff Incr 35 47.000 0.18 0.45 0.52 0.09 45 119.000 0.00 0.27 0.00 0.00 46 151.000 0.27 0.27 0.72 0.19 25 22.000 0.13 0.13 0.72 0.09 9 189.000 0.82 0.82 0.55 0.45 13 53.000 0.35 0.35 0.73 0.26 14 14 14 14 14 14 13 53.000 0.35 0.35 0.73 0.26	Tone Incr Total Incr Total Incr Total 35 47.000 0.18 0.45 0.52 0.09 0.29 45 19.000 0.27 0.27 0.72 0.19 0.19 46 151.000 0.27 0.27 0.72 0.19 0.19 25 22.000 0.13 0.13 0.72 0.45 0.45 13 53.000 0.35 0.35 0.73 0.26 0.26 13 53.000 0.35 0.35 0.73 0.26 0.26	Tone Incr Total Incr Total Incr Total Incr Total Incr Indr (n) 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 45 19.000 0.00 0.27 0.00 0.00 0.19 5.0 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 25 22.000 0.13 0.13 0.72 0.09 0.09 5.0 9 189.000 0.82 0.82 0.55 0.45 0.45 5.0 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0	Top Incr Total oceff Incr Total Incr Total <th< td=""><td>Top Incr Total coeff Incr Total Incr Main (in/hr) 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 45 119.000 0.00 0.27 0.00 0.00 0.19 5.0 5.8 8.4 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 25 22.000 0.13 0.13 0.72 0.90 0.09 5.0 5.0 9.0 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 14 Inter Inter<!--</td--><td>Total (rt) Total (ac) Total (ac) Total (ac) Incr (ac) Incr (ac)</td><td>Top Incr Total or Total Incr Total Incr Total Indr Total Inlet Syst (i) flow (uli 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 45 19.000 0.00 0.27 0.00 0.00 0.19 5.0 5.0 9.0 1.63 2.96 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.63 5.09 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35</td><td></td><td>Line Total coeff Iner Total Inlet Syst (i) flow full Size 36 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 1.85 15 45 119.000 0.00 0.27 0.00 0.00 0.19 5.0 5.8 8.4 1.63 2.96 2.16 12 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 3.04 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.86 3.41 12 9 189.000 0.82 0.82 0.45 0.45 5.0 5.0 9.0 2.29 3.35 4.43 12 9 189.000 0.35 0.35 0.73 0.26 5.0 5.0 9.0 2.29</td><td>Line Incr Total cceff Incr Total Incr Total Inlet Syst (1) (10)</td><td>Line Incr Total Pote Total Incr Incr</td><td>$\begin{array}{ c c c c c c } \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td><td>Image Image Coord Total Total Image Total Image System Ope Mail System System</td><td>$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td><td>Line nor total note <th< td=""><td>Line Correct Total Index State Index Index State Index Index State Index Index State Index <t< td=""></t<></td></th<></td></td></th<>	Top Incr Total coeff Incr Total Incr Main (in/hr) 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 45 119.000 0.00 0.27 0.00 0.00 0.19 5.0 5.8 8.4 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 25 22.000 0.13 0.13 0.72 0.90 0.09 5.0 5.0 9.0 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 14 Inter Inter </td <td>Total (rt) Total (ac) Total (ac) Total (ac) Incr (ac) Incr (ac)</td> <td>Top Incr Total or Total Incr Total Incr Total Indr Total Inlet Syst (i) flow (uli 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 45 19.000 0.00 0.27 0.00 0.00 0.19 5.0 5.0 9.0 1.63 2.96 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.63 5.09 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35</td> <td></td> <td>Line Total coeff Iner Total Inlet Syst (i) flow full Size 36 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 1.85 15 45 119.000 0.00 0.27 0.00 0.00 0.19 5.0 5.8 8.4 1.63 2.96 2.16 12 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 3.04 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.86 3.41 12 9 189.000 0.82 0.82 0.45 0.45 5.0 5.0 9.0 2.29 3.35 4.43 12 9 189.000 0.35 0.35 0.73 0.26 5.0 5.0 9.0 2.29</td> <td>Line Incr Total cceff Incr Total Incr Total Inlet Syst (1) (10)</td> <td>Line Incr Total Pote Total Incr Incr</td> <td>$\begin{array}{ c c c c c c } \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td> <td>Image Image Coord Total Total Image Total Image System Ope Mail System System</td> <td>$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td> <td>Line nor total note <th< td=""><td>Line Correct Total Index State Index Index State Index Index State Index Index State Index <t< td=""></t<></td></th<></td>	Total (rt) Total (ac) Total (ac) Total (ac) Incr (ac) Incr (ac)	Top Incr Total or Total Incr Total Incr Total Indr Total Inlet Syst (i) flow (uli 35 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 45 19.000 0.00 0.27 0.00 0.00 0.19 5.0 5.0 9.0 1.63 2.96 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.63 5.09 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35 13 53.000 0.35 0.35 0.73 0.26 0.26 5.0 5.0 9.0 2.29 3.35		Line Total coeff Iner Total Inlet Syst (i) flow full Size 36 47.000 0.18 0.45 0.52 0.09 0.29 5.0 6.7 7.9 2.27 5.59 1.85 15 45 119.000 0.00 0.27 0.00 0.00 0.19 5.0 5.8 8.4 1.63 2.96 2.16 12 46 151.000 0.27 0.27 0.72 0.19 0.19 5.0 5.0 9.0 1.74 2.81 3.04 25 22.000 0.13 0.13 0.72 0.99 0.90 5.0 5.0 9.0 1.86 3.41 12 9 189.000 0.82 0.82 0.45 0.45 5.0 5.0 9.0 2.29 3.35 4.43 12 9 189.000 0.35 0.35 0.73 0.26 5.0 5.0 9.0 2.29	Line Incr Total cceff Incr Total Incr Total Inlet Syst (1) (10)	Line Incr Total Pote Total Incr Incr	$ \begin{array}{ c c c c c c } \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Image Image Coord Total Total Image Total Image System Ope Mail System System	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Line nor total note note <th< td=""><td>Line Correct Total Index State Index Index State Index Index State Index Index State Index <t< td=""></t<></td></th<>	Line Correct Total Index State Index Index State Index Index State Index Index State Index Index <t< td=""></t<>

Hydraulic Grade Line Computations

.ine	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy Ioss (ft)	- coeff (K)	loss (ft)
1	36	45.16	149.00	152.00	3.00	7.07	6.39	0.63	152.63	0.391	30.000	149.40	152.00	2.60	6.50	6.94	0.75	152.75	0.358	0.375	0.112	0.58	0.43
2	36	45.35	149.40	152.43	3.00	7.07	6.42	0.64	153.07	0.394	31.000	149.80	152.46	2.66	6.63	6.84	0.73	153.19	0.352	0.373	0.116	0.99	0.72
3	36	46.00	149.80	153.18	3.00	7.07	6.51	0.66	153.84	0.405	110.00	0151.00	153.40	2.40	6.07	7.58	0.89	154.30	0.423	0.414	0.456	0.37	0.33
4	36	46.05	151.00	153.73	2.73	5.58	6.81	1.06	154.79	0.000	9.000	151.10	153.31	2.21**	5.58	8.25	1.06	154.37	0.000	0.000	n/a	0.91	n/a
5	36	46.09	151.10	153.31	2.21	5.58	8.26	1.06	154.37	0.000	9.000	151.20	153.41	2.21**	5.58	8.26	1.06	154.47	0.000	0.000	n/a	2.25	2.39
6	24	17.92	151.20	153.41	2.00	3.14	5.71	0.51	153.92	0.535	30.000	151.60	153.56	1.96	3.12	5.74	0.51	154.07	0.477	0.506	0.152	1.00	0.51
7	24	15.05	151.60	154.07	2.00	3.14	4.79	0.36	154.42	0.377	231.00	0153.30	154.83	1.53	2.58	5.84	0.53	155.36	0.434	0.406	0.937	2.25	1.19
8	24	8.39	153.30	156.02	2.00	3.14	2.67	0.11	156.13	0.117	76.000	153.70	156.11	2.00	3.14	2.67	0.11	156.22	0.117	0.117	0.089	1.32	0.15
9	18	7.38	154.00	156.26	1.50	1.77	4.18	0.27	156.53	0.421	90.000	154.70	156.64	1.50	1.77	4.17	0.27	156.91	0.421	0.421	0.379	1.00	0.27
10	12	1.61	157.00	157.31	0.31*	0.21	7.76	0.22	157.53	0.000	5.000	157.20	157.74	0.54**	0.43	3.74	0.22	157.96	0.000	0.000	n/a	1.00	n/a
11	30	22.52	151.20	153.41	2.21	3.35	4.90	0.70	154.11	0.000	71.000	151.60	153.21	1.61**	3.35	6.72	0.70	153.92	0.000	0.000	n/a	0.50	0.35
12	30	20.30	151.60	153.21	1.61	3.14	6.06	0.65	153.86	0.000	161.00	0152.40	153.93 j	1.53**	3.14	6.45	0.65	154.58	0.000	0.000	n/a	0.50	n/a
13	30	20.59	152.40	153.93	1.53	3.14	6.55	0.65	154.58	0.000	156.00	0153.20	154.74	1.54**	3.17	6.49	0.65	155.39	0.000	0.000	n/a	1.50	0.98
14	30	17.97	153.20	154.74	1.54	2.91	5.66	0.59	155.33	0.000	90.000	153.70	155.13 j	1.43**	2.91	6.17	0.59	155.73	0.000	0.000	n/a	1.00	0.59
15	24	13.82	153.70	155.13	1.43	2.23	5.73	0.60	155.73	0.000	94.000	154.50	155.84 j	1.34**	2.23	6.19	0.60	156.43	0.000	0.000	n/a	1.00	0.60
16	15	8.81	154.80	155.84	1.04	1.09	8.09	0.87	156.70	0.000	44.000	155.70	156.85	1.15**	1.18	7.47	0.87	157.72	0.000	0.000	n/a	0.50	0.43
17	15	7.93	155.70	156.85	1.15	1.15	6.72	0.74	157.58	0.000	49.000	156.40	157.51 j	1.11**	1.15	6.88	0.74	158.25	0.000	0.000	n/a	0.98	0.72
18	15	6.38	156.80	157.51	0.71	0.72	8.85	0.55	158.06	0.000	14.000	157.20	158.22	1.02**	1.07	5.96	0.55	158.77	0.000	0.000	n/a	1.00	0.55
19	12	1.61	156.80	157.14	0.34*	0.23	6.88	0.22	157.36	0.000	14.000	157.20	157.74	0.54**	0.43	3.74	0.22	157.96	0.000	0.000	n/a	1.00	n/a
20	12	1.66	156.70	157.51	0.81	0.68	2.43	0.09	157.60	0.189	26.000	156.80	157.55	0.75	0.63	2.63	0.11	157.66	0.224	0.206	0.054	1.00	0.11
21	18	6.21	153.70	155.13	1.43	1.20	3.57	0.42	155.55	0.285	91.000		155.16	0.96**		5.19	0.42	155.58	0.356	0.321	n/a	2.10	n/a
22	12	3.23	156.70	157.10	0.40*	0.29	11.05	0.39	157.48	0.000	8.000	157.20	157.97	0.77**	0.65	4.98	0.39	158.36	0.000	0.000	n/a	1.00	n/a
Pro	ject File:	System 1	10.stm											N	umber o	of lines: 5	50		Rur	Date: 8	5/14/202	1	

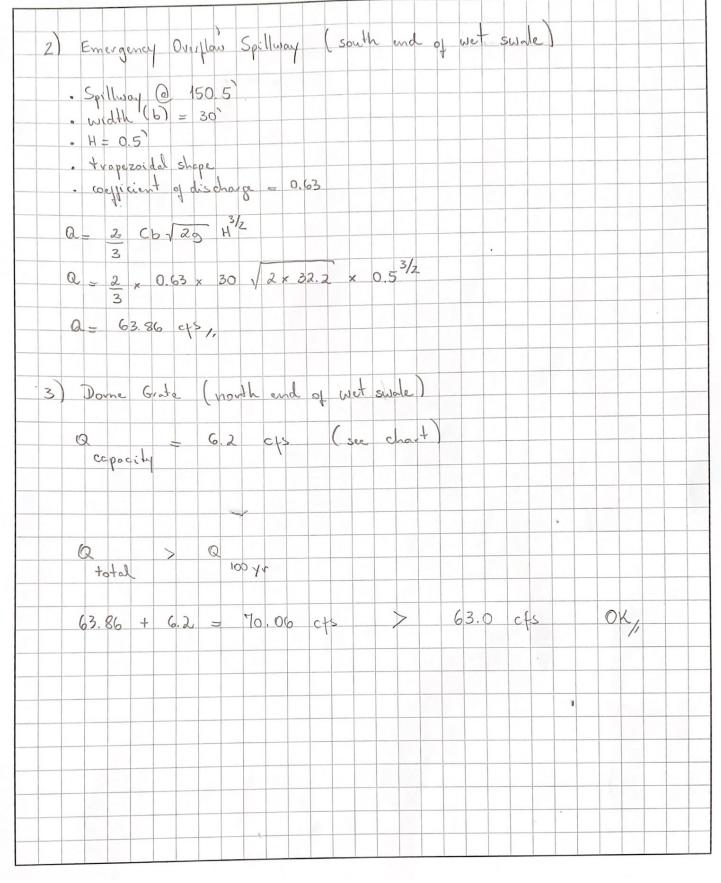

Hydraulic Grade Line Computations

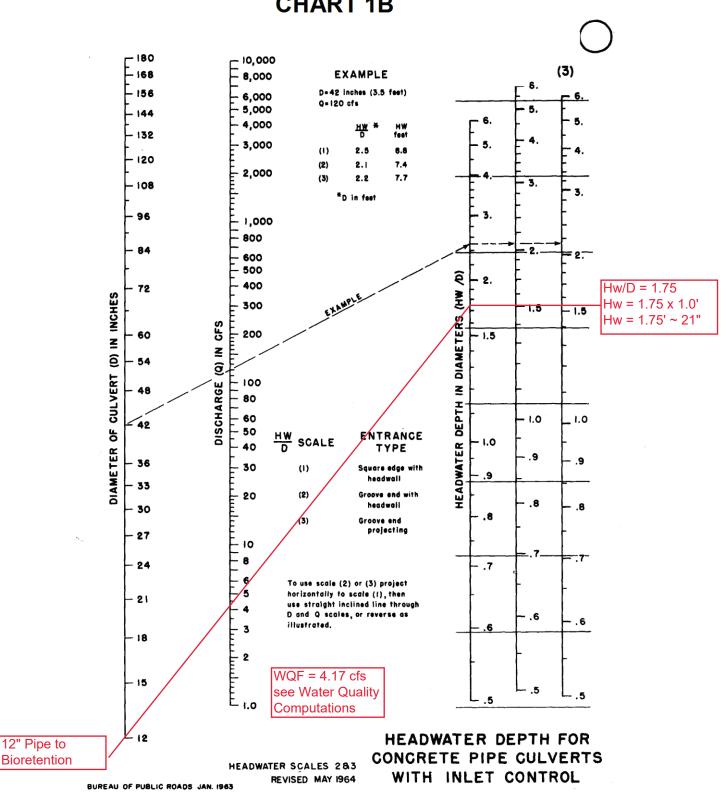

.ine	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
23	12	0.66	156.60	156.88	0.28*	0.18	3.66	0.12	157.00	0.000	20.000	156.80	157.14	0.34**	0.23	2.82	0.12	157.26	0.000	0.000	n/a	1.00	0.12
24	18	7.38	151.20	153.41	1.50	1.77	4.17	0.27	153.68	0.421		0152.40	154.25	1.50	1.77	4.17	0.27	154.53	0.420	0.420	0.845	0.92	0.25
25	18	6.77	152.40	154.50	1.50	1.77	3.83	0.23	154.73	0.355	52.000	152.70	154.69	1.50	1.77	3.83	0.23	154.92	0.354	0.355	0.184	1.48	0.34
26	18	5.71	152.70	155.03	1.50	1.77	3.23	0.16	155.19	0.252	138.00	0153.40	155.37	1.50	1.77	3.23	0.16	155.54	0.252	0.252	0.348	1.00	0.16
27	12	2.59	155.70	156.28	0.58*	0.47	5.48	0.31	156.59	0.000	54.000	156.30	156.99	0.69**	0.58	4.48	0.31	157.30	0.000	0.000	n/a	0.50	n/a
28	12	1.24	156.30	156.99	0.69	0.36	2.15	0.18	157.17	0.000	44.000	156.60	157.07 j	0.47**	0.36	3.42	0.18	157.25	0.000	0.000	n/a	0.91	n/a
29	12	1.26	156.60	157.07	0.47	0.36	3.48	0.18	157.25	0.000	39.000	156.90	157.37	0.47**	0.37	3.44	0.18	157.56	0.000	0.000	n/a	1.00	0.18
30	12	3.23	156.60	157.04	0.44*	0.33	9.74	0.39	157.42	0.000	52.000	158.90	159.67	0.77**	0.65	4.98	0.39	160.06	0.000	0.000	n/a	1.00	n/a
31	12	2.26	155.70	156.91	1.00	0.79	2.87	0.13	157.03	0.342	63.000	156.40	157.06	0.66	0.55	4.09	0.26	157.32	0.570	0.456	0.287	1.50	0.39
32	12	1.57	156.40	157.45	1.00	0.79	2.00	0.06	157.51	0.167	20.000	156.60	157.47	0.87	0.73	2.16	0.07	157.55	0.151	0.159	0.032	1.00	0.07
33	12	0.89	156.00	156.36	0.36*	0.25	3.50	0.15	156.51	0.000	101.00	0156.70	157.09	0.39**	0.29	3.08	0.15	157.24	0.000	0.000	n/a	1.00	n/a
34	12	3.41	155.50	156.20	0.70*	0.59	5.76	0.41	156.61	0.000	119.00	0156.80	157.59	0.79**	0.66	5.13	0.41	158.00	0.000	0.000	n/a	1.00	n/a
35	15	3.55	153.60	155.54	1.25	1.23	2.89	0.13	155.67	0.258	57.000	153.90	155.68	1.25	1.23	2.89	0.13	155.81	0.257	0.258	0.147	0.94	0.12
36	12	0.84	155.80	156.16	0.36*	0.25	3.35	0.14	156.30	0.000	31.000	156.00	156.38	0.38**	0.28	3.03	0.14	156.53	0.000	0.000	n/a	1.00	0.14
37	15	4.38	155.00	155.84	0.84	0.87	5.01	0.38	156.22	0.000	45.000	155.30	156.15	0.85**	0.89	4.95	0.38	156.53	0.000	0.000	n/a	0.50	n/a
38	15	4.01	155.30	156.15	0.85	0.89	4.52	0.32	156.47	0.510	39.000	155.50	156.35	0.84	0.88	4.54	0.32	156.67	0.514	0.512	0.200	1.47	0.47
39	15	2.53	155.50	156.82	1.25	1.23	2.06	0.07	156.88	0.131	19.000	155.60	156.84	1.24	1.23	2.06	0.07	156.91	0.121	0.126	0.024	1.00	0.07
40	15	2.93	154.20	155.16	0.96	0.69	2.89	0.28	155.44	0.186	46.000	154.50	155.19 j	0.69**	0.69	4.24	0.28	155.47	0.186	0.186	n/a	0.97	0.27
41	15	2.98	154.50	155.19	0.69	0.69	4.31	0.28	155.47	0.190	36.000	154.70	155.39	0.69**	0.70	4.26	0.28	155.68	0.190	0.190	n/a	1.50	0.42
42	12	2.83	154.70	155.39	0.69	0.58	4.87	0.34	155.73	0.564	20.000	154.90	155.62	0.72**	0.61	4.67	0.34	155.96	0.564	0.564	n/a	1.47	n/a
43	12	2.75	154.90	155.70	0.80*	0.67	4.09	0.26	155.96	0.533	75.000	155.30	156.10	0.80	0.67	4.09	0.26	156.36	0.532	0.533	0.400	0.50	0.13
44	12	2.03	155.30	156.23	0.93	0.50	2.67	0.11	156.34	0.241	201.00	0156.30	156.91	0.61**	0.50	4.03	0.25	157.17	0.577	0.409	0.822	1.00	0.25
Proje	ect File:	System 1	10.stm											 N	umber o	of lines: 5	50		Rur	Date:	5/14/202	1	

Hydraulic Grade Line Computations

ine Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	JL	Minor
(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	elev	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Ave Sf (%)	Enrgy Ioss (ft)	coeff (K)	loss (ft)
45 15	2.27	153.90	155.81	1.25	1.23	1.85	0.05	155.86	0 105	47.000	154.20	155.86	1.25	1 0 0	1.85	0.05	155.91	0.105	0.105	0.049	0.50	0.03
45 15	1.63	153.90	155.88	1.25	0.79	2.08	0.05	155.86	0.105		0155.20	155.66	0.88	1.23 0.73	2.24	0.05	156.15		0.105	0.049	0.50	0.03
47 12	1.74	155.20	156.15	0.95	0.45	2.26	0.07	156.23	0.177		0156.00	156.56 j		0.46	3.82	0.23	156.79		0.364	0.549	1.00	0.23
18 12	0.84	155.20	155.52	0.32*	0.22	3.80	0.14	155.67			155.40	-	0.38**	0.28	3.03	0.14	155.93		0.000	n/a	1.00	0.14
19 15	4.05	154.70	156.91	1.25	1.23	3.30	0.17	157.08	0.335		0155.70	157.54	1.25	1.23	3.30	0.17	157.71	0.334	0.335	0.632	1.00	0.17
50 12	2.29	154.70	155.31	0.61*	0.50	4.59	0.28	155.59			155.10	155.75	0.65**	0.54	4.26	0.28	156.03		0.000	n/a	1.00	0.28
Project File: \$	Gystem 1	10.stm											N	umber o	f lines: 5	60		Run	Date: \$	5/14/202	1	

	Outlet Protection Calc	<u>ulations</u>	
<u>Project:</u> Cutler Eleme <u>Location:</u> 160 Fishtown <u>Outlet I.D.</u> <u>FES 1</u>	-	<u>By:</u> AWG <u>Checked:</u>	<u>Date:</u> 5/13/2021 <u>Date:</u>
*Based on Connecticut DC	T Drainage Manual, Section 11.1	<u>13</u>	
<u>Description:</u> Riprap Energy Dissipa	ator at FES 1		
Design Criteria (25yr St			
Q (cfs) = 45.16	R _p (ft)=	3	
D (in) = 36	$S_{p}(ft) =$	3	
V (fps) = 6.67	Tw (ft)=	3 (in full condition)	
D= Outlet pipe diamete V= Flow velocity at disc R _p = Maximum inside p	charge point (ft/s) ipe rise (ft) or circular sections of maximum ir		ircular sections (ft)
<u>Based on Table 11.13.1,</u> A	<u>Preformed Scour Hole</u> is used (<u>One Half Pipe Rise Depre</u>	ession (Type I)
Rip Rap Stone Size:			
D ₅₀ Computed (ft)	Rip Rap Specification	D ₅₀ Stone Size Requi	ired
0.15	Modified	5 inches	
Preformed Scour Hole Di	mensions:		
$F = 0.5(R_p)$	=	1.5 ft	
$C = 3.0(S_p) + 6.0(F)$	=	18ft	
$B = 2.0(S_p)+6.0(F)$	=	15ft	
d (Depth of Stone)	=	12 inches	
· · · /			




SHEET NO.	Z	_ OF	Z	SCALE	
CALCULATED BY				_ DATE	

CHECKED BY ____

JOB _

DATE _

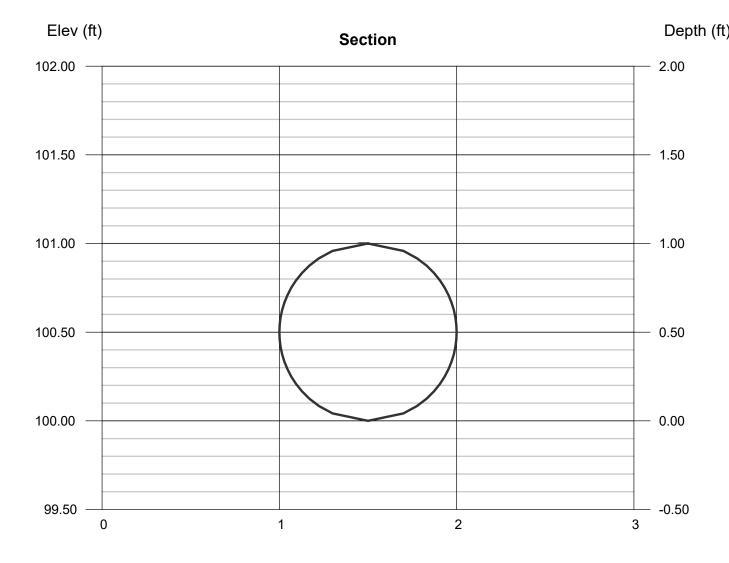
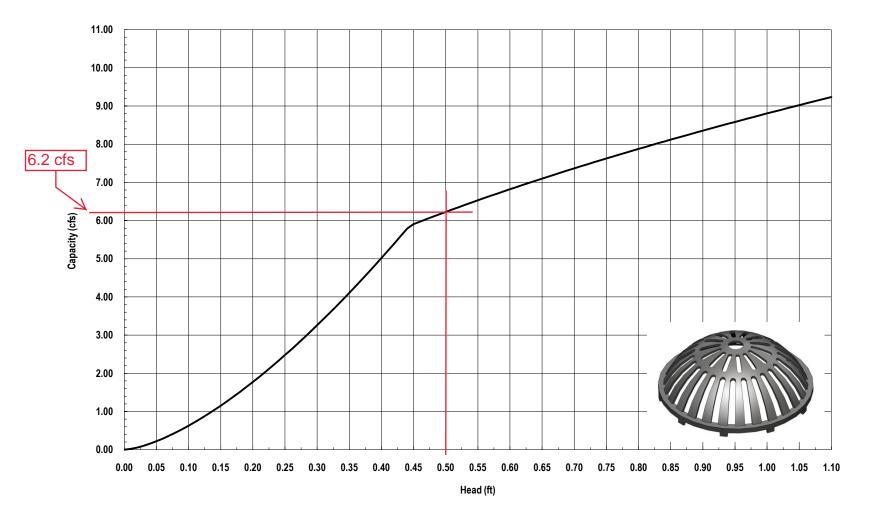


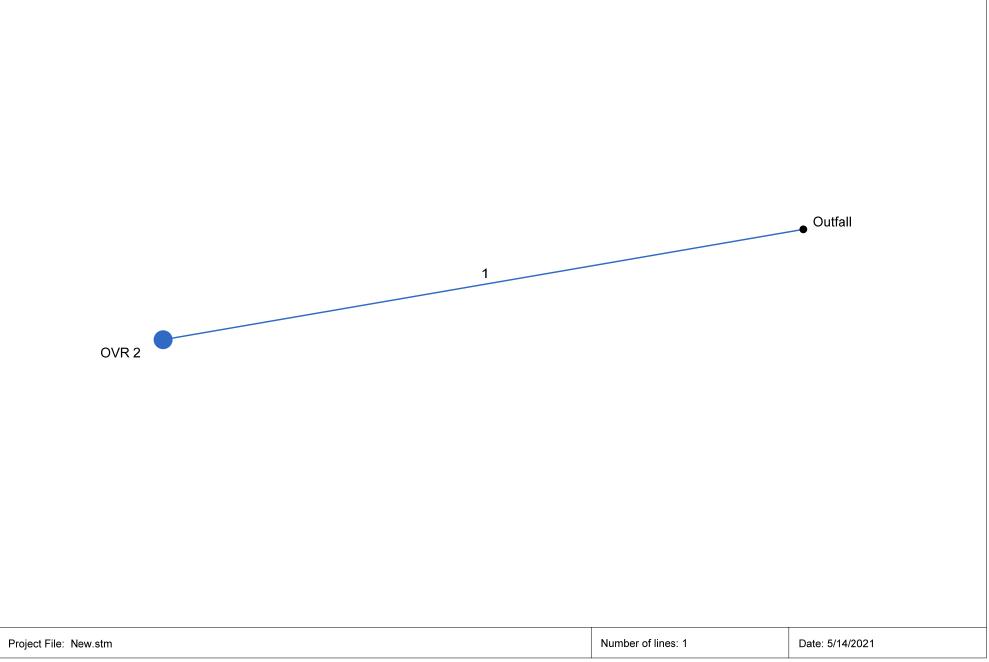
CHART 1B

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Wednesday, May 5 2021

<name></name>	Capacity of 12" pipe into WQ Swale]	
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 1.00
		Q (cfs)	= 4.865
		Area (sqft)	= 0.79
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.19
Slope (%)	= 1.59	Wetted Perim (ft)	= 3.14
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.91
		Top Width (ft)	= 0.00
Calculations		EGL (ft)	= 1.60
Compute by:	Q vs Depth		
No. Increments	= 5		

Reach (ft)


Nyloplast 24" Dome Grate Inlet Capacity Chart

3130 Verona Avenue • Buford, GA 30518 (866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490 © Nyloplast Inlet Capacity Charts June 2012

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

No. 1	Dnstr Line No.	Length	angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff	Inlet Time	Invert	Line	Invert	Line	Line	N	J-Loss	Inlet/	-
1	End	148.000	170 172				(C)	(min)	El Dn (ft)	Slope (%)	El Up (ft)	Size (in)	Shape	Value (n)	Coeff (K)	Rim El (ft)	
				MH	4.17	0.00	0.00	(min) 0.0	EI Dn (ft) 146.70	0.54	El Op (ft) 147.50	15	Cir	value (n) 0.012	Соеп (К) 1.00	Rim EI (ft) 150.50	OVR 4 - MH 2

Drng Area Station Rnoff Area x C Тс Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len coeff (I) flow full Line То Total Syst Size Dn Up Up Incr Total Incr Inlet Slope Dn Up Dn Line (ft) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) (ac) (ac) End 148.000 0.00 149.40 OVR 4 - MH 2 1 0.00 0.00 0.00 0.00 0.0 0.0 0.0 4.17 5.14 3.40 15 0.54 146.70 147.50 149.93 152.60 150.50 Project File: New.stm Number of lines: 1 Run Date: 5/14/2021 NOTES:Known Qs only ; c = cir e = ellip b = box

Storm Sewer Tabulation

Storm Sewers v2018.30

Page 1

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, May 7 2021

<Name>

Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value Calculations	= 0.50 = 100.00 = 0.50 = 0.012	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 0.34
Compute by: No. Increments	Q vs Depth = 4		0.07
Rooftop area (main Q (25yr) = 0.046 ac	t. bld) = 2,012 ft2 = 0.046 acres x 0.9 x 9.0 in/hr = 0.37cfs E, 0.5% slope = 0.43cfs		
Elev (ft)			Section
101.00			
100.75			
100.50			
100.25			
100.00			
99.75		1	

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, May 7 2021

<Name>

Circular Diameter (ft)	= 0.67	Highlight Depth (ft) Q (cfs) Area (sqf		= 0.60 = 1.000 = 0.33
Invert Elev (ft) Slope (%) N-Value	= 100.00 = 0.50 = 0.012	Velocity (Wetted P Crit Deptl		= 2.99 = 1.68 = 0.48
Calculations Compute by: No. Increments	Q vs Depth = 10	EGL (ft)		= 0.74
Q (25yr) = 0.078 ac	ge blds) = 3,400 ft2 = 0.078 acres x 0.9 x 9.0 in/hr = 0.63cfs E, 0.5% slope = 1.0cfs			
1.0 cfs> 0.63 cfs				
Elev (ft)				Section
101.00				
100.75				
100.50			/	
100.25				
100.00				
99.75			1	

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, May 7 2021

<Name>

Circular Diameter (ft) Invert Elev (ft) Slope (%) N-Value	= 0.83 = 100.00 = 0.50 = 0.012	Crit Depth	t) ft/s) erim (ft) ℩, Yc (ft)	= 0.58
Calculations Compute by: No. Increments	Q vs Depth = 4	Top Widtl EGL (ft)	h (ft)	= 0.00 = 0.98
Q (25yr) = 0.14 ac	house) = 6,120 ft2 = 0.14 acres x 0.9 x 9.0 in/hr = 1.14 cfs DPE, 0.5% slope = 1.66 cfs			
1.66 cfs> 1.14 cfs				
Elev (ft)		1		Section
101.00				
100.75				
100.50				
100.25				
100.00				
99.75			1	

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, May 7 2021

<Name>

Circular Diameter (ft)	= 1.00	HighlightedDepth (ft)= 1.00 Q (cfs)= 2.728 Area (sqft)= 0.79	
Invert Elev (ft) Slope (%) N-Value	= 100.00 = 0.50 = 0.012	Velocity (ft/s)= 3.47 Wetted Perim (ft)= 3.14 Crit Depth, Yc (ft)= 0.71 Top Width (ft)= 0.00	
Calculations Compute by: No. Increments	Q vs Depth = 4	EGL (ft) = 1.19	
Q (25yr) = 0.4 ac 1/2 rooftop discha	ain building) = 17,250 ft2 = 0 x 0.9 x 9.0 in/hr = 3.24 cfs arge = 1.62 cfs IDPE, 0.5% slope = 2.73 cfs		
2.73 cfs> 1.62 cfs			Denth (ft)
Elev (ft)		Section	Depth (ft)
102.00 —			— 2.00
101.50 —			— 1.50
101.00 —			— 1.00
100.50 —			— 0.50
100.00 —			— 0.00
99.50 — (0	1 2 3	— -0.50

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, May 7 2021

Depth (ft)

<Name>

= 1.00	High Dept
	Q (cf
	Area
= 100.00	Velo
= 1.00	Wett
= 0.012	Crit I
	Тор
	EĠL
Q vs Depth	
= 4	
	= 100.00 = 1.00 = 0.012 Q vs Depth

Highlighted	- 1.00
Depth (ft)	= 1.00
Q (cfs)	= 3.858
Area (sqft)	= 0.79
Velocity (ft/s)	= 4.91
Wetted Perim (ft)	= 3.14
Crit Depth, Yc (ft)	= 0.84
Top Width (ft)	= 0.00
EGL (ft)	= 1.38

Rooftop area (main building) = 17,250 ft2 = 0.4 acres Q (25yr) = 0.4 ac x 0.9 x 9.0 in/hr = 3.24 cfs Capacity of 12" HDPE, 1% slope = 3.86 cfs 3.86 cfs> 3.24 cfs <u>OK</u>

Elev (ft)

Section 102.00 -- 2.00 101.50 — - 1.50 101.00 -- 1.00 100.50 -- 0.50 100.00 -- 0.00 99.50 --0.50 0 1 2 3

ATTACHMENT G

WATER QUALITY COMPUTATIONS

Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

Engineering Planning Landscape Architecture Environmental Science & Services

JOB Barber Cove SLE#141.17126.00001 1 1 OF_ SHEET NO. SCALE 5/14/2 FAB DATE _ CALCULATED BY_ DATE _ CHECKED BY_

Total man Man	ag	late 2me	r C int	Rud	ity	V. chi ats	ces	ne i	())	w by d	a.J ev	to	pr. W	ovid	ed	СТ	7 _I	the	P	st,	or m	sto	ter	wai Q	ter	ily	
1 - 1	wa							0.	59	a.		ţł	1l	63	25,	741	+	ęt:	3	(c	nti	12	pr	ojec	to	vea)
_	w	QV	P	vov	ide	d	:																				
	_	h	ta (ev	Q	al	ity	5	wal	د :	-	15	,42	8	4ª	3											
	-	I,	nfi	Hr	ati.	on	6	مال	en	us.	(24``	Co	ncri	te	cha	mt	bers	Fr	om	U	nit	ed	Cov	ncre	te,	Ir
			70	00	ch	an	ber	rs	×	٢	3.1	15	413/	che	mte)er	11		11,	۶T	2 f	3			21	•	
		(15	,4	38-	F 1	1,7	52)	ft3	11	10	5A'	190	14	3												
		2	1, 1 Drov	90 vide	f. d)	3	>		25,	74 94	t i	d					OK	-									
														•													

STORMWATER QUALITY CALCULATIONS: Water Quality & Groundwater Recharge Volume

Basin ID	Post- Development Impervious Area	Percent Impervious	Volumetric Runoff Coeff., R	Recharge Depth ^{1.} , D (in.)	WQV (ac-ft)	GRV (ac-ft)	Total Volume Required ² . (ac-ft)
Overall Development	7.46	100%	0.95	0.25	0.591	0.155	0.591

^{1.-} Depth of Runoff to be Recharged or Recharge Depth taken from Table 7-4 found on page 7-6 of the CT DEEP Stormwater Quality Manual.

^{2.-} GRV is considered as part of the total WQV required.

$$WQV = \frac{(1.0 \text{ inches}) \text{ x A x R}}{12}$$

Where: WQV = Water Quality Volume in acre-feet A = Contributing Area in acres R = 0.05 + 0.009 (I)I = Site Imperviousness as percent

$$\mathbf{GRV} = \frac{\mathbf{D} \mathbf{x} \mathbf{A} \mathbf{x} \mathbf{I}}{12}$$

Where: GRV = Groundwater Recharge Volume in acre-feetD = Depth of Runoff to be Recharged in inchesA = Contributing Area in acresI = Site Imperviousness as decimal

STORMWATER QUALITY CALCULATIONS Water Quality Volume Provided

Water Quality Swale - Wet Swale:

Northern Bay:

Elevation (ft)	Surface Area (ft2)	Volume (ft3)	Volume (ac-ft)	Cumulative Volume (ft3)	Cumulative Volume (ac-ft)
147.5	1,400	0.0	0.000	0.0	0.000
148.0	2,225	906.3	0.021	906	0.021
149.0	3,925	3,075.0	0.071	3,981	0.091
149.25	4,300	1,028.1	0.024	5,009	0.115
149.5	4,675	1,121.9	0.026	6,131	0.141
150.0	5,425	2,525.0	0.058	8,656	0.199

Southern Bay:

Elevation (ft)	Surface Area (ft2)	Volume (ft3)	Volume (ac-ft)	Cumulative Volume (ft3)	Cumulative Volume (ac-ft)
147.8	550	0.0	0.000	0.0	0.000
148.0	700	125.0	0.003	125	0.003
149.0	1,250	975.0	0.022	1,100	0.025
149.5	1,525	693.8	0.016	1,794	0.041
150.0	1,775	825.0	0.019	2,619	0.060

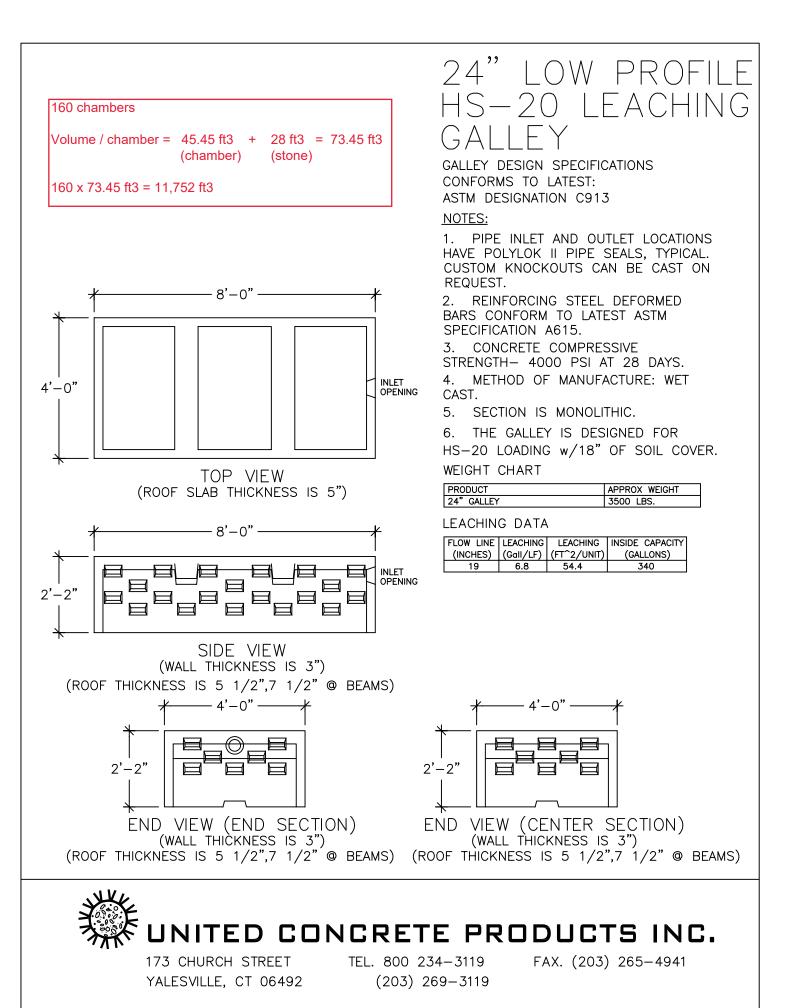
Top Storage Volume (Above Elev. 150.0 ft):

	Cumulative Volume (ac-ft)	Cumulative Volume (ft3)	Volume (ac-ft)	Volume (ft3)	Surface Area (ft2)	Elevation (ft)
	0.000	0.0	0.000	0.0	7,200	150.0
Overflow Ele	0.096	4,163	0.096	4,162.5	9,450	150.5
	0.214	9,306	0.118	5,143.8	11,125	151.0

Total Volume Provided at Overflow Elevation (151.7 ft) = 8,656 + 2,619 + 4,163 = 15,438 ft3

Engineering Planning Landscape Architecture Environmental Science & Services

JOB Barber Core - SLR # 17126.00001 OF_1 1 SHEET NO .. SCALE


CALCULATED BY FAG

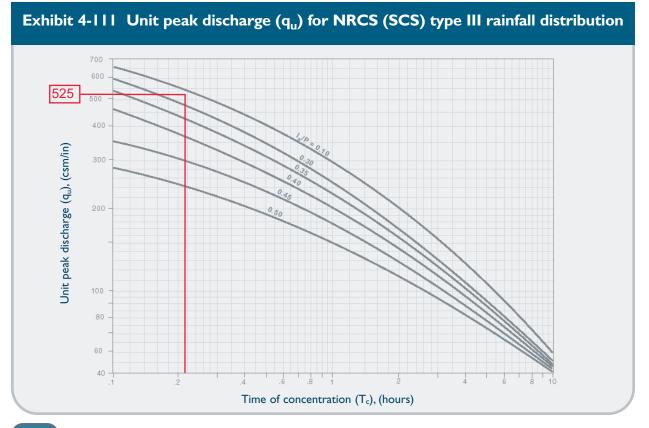
______ DATE ______

CHECKED BY _____

Ε_____

•	7.	e-	fre	at.	men	+	reo	jui.	ren	un	5	40	r	Pro	po	seo	L	W	ateu	, (Qua	lih	1	Swa	Je	:		
		Pe	st	der	elo	pm	ent		im	per	vio	us	av	ea	1	1	1.4	6	acr	ls								
	~	Ye	me	ve	fr	em	4	he	cal	aul	lati	ovis		the	in	sper	vio	us	QUC	a	fro	~	the	11,	1001	top	S	
		dr			Ĭ.				1		hian		1.10															
											acy.																	
	1	W	QJ	H	1	× 1 12	¥ ,	R	1	1	X	5.	48	ac	×	O.	95	1	2	11 11).4 18,4	34	0 5 - 2	12-1 1+3	ęt		
		R	= (2.93	5(100	ho.	imp	pervi	ious)																	
	_	2	5%	c	f	18,	90	51	13	1	L	1, 7,	26	t	3													_
	_	No	lu	me	- 1	0.00	vid	cd	i	- ,	nov.	the	vn	70	ay	()	e	eJ	. 1	149	.25	H	:				-
					3	5	5,0	ec	ţ		>	4,	72	64	1 ³			01	L									
																			//									
						_																						
			_		_																							

	SLR CONS	ULTING					Project	17126.00001
	COMPUTA	TION SHEE	Made By:	FAB				
Subject:			Date:	5/14/2021				
	20		Barber (A T	Chkd by:	
	32 ar	nd 36 Iron	Horse Bo	ulevard, 5	msbury	, 61	Date:	
Contech CDS	<u>S Unit</u>							
						* 1 00		
Contributing			Imperv. Area	Total Area			•	ious area from
Contributing Basin			(acres) *				ps draining t	
WS 11			(acres) 5.05	(acres) 10.82		galienes	not used in t	he calculations
V			5.05	10.02				
Table 4.1: W	QV = (P)(R.,)(A)/12 =		. 0 424	acre-feet			
Where:		/(• •)/ • =		0.121				
I = % of Impe	ervious Cove	er =		47%				
$R_v = volumet$			009(1) =	0.470				
P = design p			.,		1	inch		
A = site area	· ·			,	acres =	0.0169	miles ²	
				10.02	40100	0.0100		
Q = runoff de	epth (in wate	rshed inches	s) = [WQV(a	crefeet)]*[12	(inches/fc	ot)]/draina	de area (aci	es)
			Q =	0.470		/]		,
			-					
CN = 1000 /	[10+ 5P + 10	$DQ - 10(Q^2 +$	1.25QP) ^{0.5}]	=	93			
Where:	-							
Q = runoff de	pth (in wate	rshed inches	s)					
			t _c =	0.21	hours			
Type III Rain	fall Distributi	ion:						
	From Table 4-1, $Ia = 0.151$				0.151			
(TR-								
From Exhibit	4-III, q _u =	525	csm/in.					
(TR-	55)							
WQF = (qu)(dr)		4.17	cfs					



- 2. Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- 3. Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

	٦	able 4-1 I _a	values for	runoff curv	e number	S	
Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)
40 41 42 43 44 45 46 47 48 49 50 51	3.000 2.878 2.762 2.651 2.545 2.444 2.348 2.255 2.167 2.082 2.000 1.922	55 56 57 58 59 60 61 62 63 64 65 66	1.571 1.509 1.448 1.390 1.333 1.279 1.226 1.175 1.125 1.077	70	0.817 0.778 0.740 0.703 0.667 0.632 0.597 0.564 0.532 0.500	85 86 87 88 89 90 91 91 92 93 93 94 95 96	
52 53 54	1.846 1.774 1.704	67 68 69		82 83 84	0.439 0.410 0.381	97	0.041

O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

O Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

Product Flow Rates

CASCADE		
Model	Treatment Rate	Sediment Capacity ¹
Model	(cfs)	(CF)
CS-4	2.00	19
CS-5	3.50	29
CS-6	5.60	42
CS-8	12.00	75
CS-10	18.00	118

Treatment Rate²

(cfs)

1.00

1.40

1.40

1.40

2.20

2.20

3.20

3.20

3.90

5.00

5.70

6.50

7.50

9.50

VORTECHS		
Madal	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
STC 450i	0.40	46
STC 900	0.89	89
STC 2400	1.58	205
STC 4800	2.47	543
STC 7200	3.56	839
STC 11000	4.94	1086
STC 16000	7.12	1677

1 Additional sediment storage capacity available – Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

Sediment Capacity¹

(CF)

14

25

39

57

39

57

39

57

57

57

57

57

151

151

CDS

Model

1515-3

2015-4

2015-5

2015-6

2020-5

2020-6

2025-5

2025-6

3020-6

3025-6

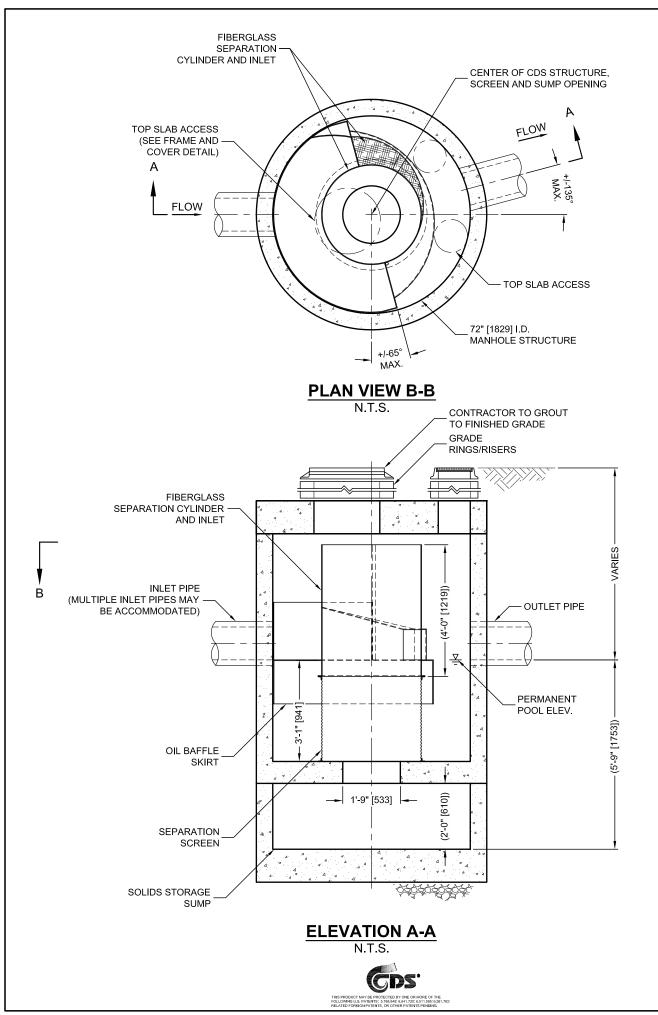
3030-6

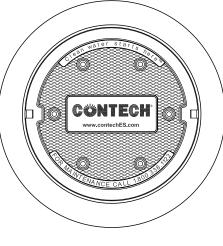
3035-6

4030-8

4040-8

STORMWATER SOLUTIONS


NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.



Get social with us: fin S

CDS3025-6-C DESIGN NOTES

THE STANDARD CDS3025-6-C CONFIGURATION IS SHOWN. ALTERNA CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS
CONFIGURATION DESCRIPTION
GRATED INLET ONLY (NO INLET PIPE)
GRATED INLET WITH INLET PIPE OR PIPES
CURB INLET ONLY (NO INLET PIPE)
CURB INLET WITH INLET PIPE OR PIPES
SEPARATE OIL BAFFLE (SINGLE INLET PIPE REQUIRED FOR THIS CON
SEDIMENT WEIR FOR NJDEP / NJCAT CONFORMING UNITS

FRAME AND COVER

(DIAMETER VARIES) N.T.S.

GENERAL NOTES

B

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERW
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. AG 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIME
- SOLUTIONS LLC REPRESENTATIVE. www.contechES.com 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION
- AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE в. (LIFTING CLUTCHES PROVIDED).
- CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. C.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

NATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME

ONFIGURATION)

SITE SPECIFIC DATA REQUIREMENTS							
STRUCTURE ID							
WATER QUALITY	FLOW RAT	E (CFS OR L/s)		*			
PEAK FLOW RAT	E (CFS OR I	L/s)		*			
RETURN PERIOD	OF PEAK F	LOW (YRS)		*			
SCREEN APERTU	JRE (2400 C	PR 4700)		*			
	15						
PIPE DATA:	I.E.	MATERIAL	D	IAMETER			
INLET PIPE 1	*	*		*			
INLET PIPE 2	*	*		*			
OUTLET PIPE	*	*		*			
RIM ELEVATION				*			
ANTI-FLOTATION	BALLAST	WIDTH	Т	HEIGHT			
		*		*			
NOTES/SPECIAL REQUIREMENTS:							

FECH ENGINEERED

CDS3025-6-C

INLINE CDS

STANDARD DETAIL

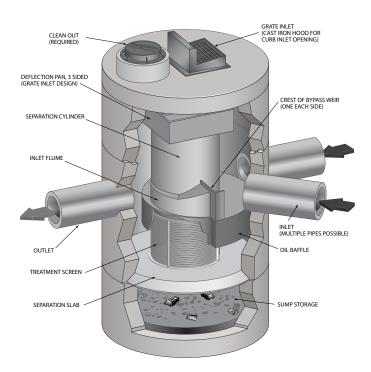
'ISE. CTUAL DIMENSIONS MAY VARY.	
NSIONS AND WEIGHTS, PLEASE CONTACT	YOUR CONT

RIM ELEVATION	
ANTI-FLOTATION BALLAST	WIDTH
	*
NOTES/SPECIAL REQUIREN	MENTS:
* PER ENGINEER OF RECO	RD

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.


Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method[™] or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

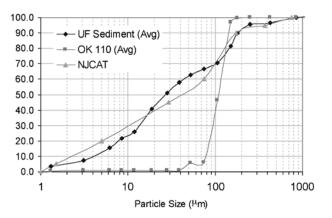


Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

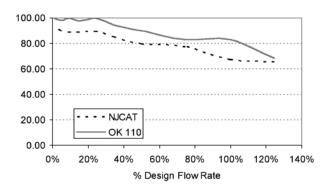


Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

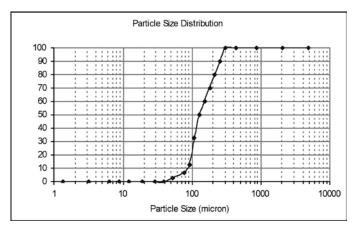
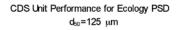



Figure 3. WASDOE PSD

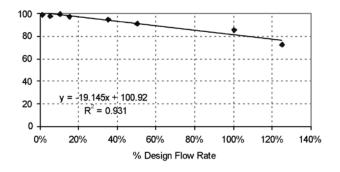


Figure 4. Modeled performance for WASDOE PSD.

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Dian	neter	Distance from to Top of Se		Sediment Storage Capacity		
	ft	m	ft	m	У³	m³	
CDS1515	3	0.9	3.0	0.9	0.5	0.4	
CDS2015	4	1.2	3.0	0.9	0.9	0.7	
CDS2015	5	1.5	3.0	0.9	1.3	1.0	
CDS2020	5	1.5	3.5	1.1	1.3	1.0	
CDS2025	5	1.5	4.0	1.2	1.3	1.0	
CDS3020	6	1.8	4.0	1.2	2.1	1.6	
CDS3025	6	1.8	4.0	1.2	2.1	1.6	
CDS3030	6	1.8	4.6	1.4	2.1	1.6	
CDS3035	6	1.8	5.0	1.5	2.1	1.6	
CDS4030	8	2.4	4.6	1.4	5.6	4.3	
CDS4040	8	2.4	5.7	1.7	5.6	4.3	
CDS4045	8	2.4	6.2	1.9	5.6	4.3	
CDS5640	10	3.0	6.3	1.9	8.7	6.7	
CDS5653	10	3.0	7.7	2.3	8.7	6.7	
CDS5668	10	3.0	9.3	2.8	8.7	6.7	
CDS5678	10	3.0	10.3	3.1	8.7	6.7	

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Mode	l:		Lo	cation:	
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

ATTACHMENT H

HYDROLOGIC ANALYSIS – INPUT COMPUTATIONS

Drainage Report

Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

	Curve Number Calculations						
Location:	Project: Barber Cove Development Location: 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001						
•	By: FAB Date: 5/14/21 Checked: Date: Circle one: Present Developed Watershed: EXWS-10						
Soil Name	Cover Description	С	N Value	e ^{1.}	Area	Product	
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area	
B Soil	Woods - Good Condition	55			0.58	31.70	
B Soil	Meadow - Good Condition	58			2.21	128.18	
B Soil	Open Space - Good Condition	61			0.08	5.02	
B Soil	Open Space - Poor Condition	79			0.48	37.86	
B Soil	Graveled Roads	85			3.98	338.09	
C Soil	Open Space - Poor Condition	86			0.02	1.35	
C Soil	Graveled Roads	89			0.26	23.04	
D Soil	Woods - Good Condition	77			0.01	0.85	
D Soil	Meadow - Good Condition	78			0.90	70.19	
D Soil	Graveled Roads	91			0.02	1.58	
N/A	Impervious (buildings)	98			0.40	38.77	
N/A	Impervious (drives, sidewalks, parking, patios)	98			4.22	413.26	
N/A	Water	98			0.1	8.51	
L			Tota	als =	13.23	1098.41	
				(0.02067	sq mi)	
CN (weighted) = $\frac{\text{total product}}{\text{total area}}$ = $\frac{109}{13}$	8.41 .23	Use	e CN =	83.0		

	Curve Number Calculations						
•	Project: Barber Cove Development Location: 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001						
•	By: FAB Date: 5/14/21 Checked: Date: Circle one: Present Developed Watershed: EXWS-20						
Soil Name	Cover Description				Area	Product	
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area		
B Soil	Woods - Good Condition	55			0.05	2.63	
B Soil	Meadow - Good Condition	58			0.02	1.16	
B Soil	Open Space - Poor Condition	79			0.04	3.03	
B Soil	Graveled Roads	85			0.01	0.95	
D Soil	Woods - Good Condition	77			0.09	6.66	
D Soil	Meadow - Good Condition	78			0.01	0.39	
D Soil	Open Space - Poor Condition	89			0.04	3.12	
D Soil	Graveled Roads	91			0.01	0.56	
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.12	12.00	
			Tota	als =	0.37	30.50	
				(0.00058	sq mi)	
CN (\		.50 37	Use	e CN =	81.9		

Location: By:	Curve Number Ca Barber Cove Development 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001 FAB Date: 5/14/21 Ch Present Developed	Date:				
Soil Name	Cover Description	C	N Value	• ^{1.}	Area	Product of
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	OT CN x Area	
B Soil	Woods - Good Condition	55			0.17	9.58
B Soil	Open Space - Good Condition	61			0.06	3.96
D Soil	Woods - Good Condition	77			0.01	0.39
D Soil	Open Space - Good Condition	80			0.01	0.40
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.08	7.58
	total medicat	01	Tota	als = (0.33 0.00051	21.91 sq mi)
CN (י	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{21}{0.3}$.91 33	Use	e CN =	67.1	

Location:	Curve Number Ca Barber Cove Development 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001 FAB Date: 5/14/21		ation		Date	
Circle one:	Present Developed Wate	ershed:	EXWS	6-40		
Soil Name and Hydrologic Group (appendix A)	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Area Acres Sq. Ft. %	Product of CN x Area	
B Soil	Open Space - Good Condition	61			0.02	1.34
N/A						
CN (1	$Totals = CN (weighted) = \frac{total product}{total area} = \frac{7.99}{0.09} Use CN = 0.09$					7.99 sq mi)

	Curve Number Calculations						
	Project: Barber Cove Development Location: 32 & 36 Iron Horse Boulevard, Simsbury, CT						
Location.	SLR #17126.00001						
•		ecked:		50	Date:		
Circle one:	Circle one: <u>Present</u> Developed Watershed: EXWS-50						
Soil Name and	Cover Description	C	N Value	e ^{1.}	Area	Product of	
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	CN x Area		
B Soil	Woods - Good Condition	55			0.42	22.93	
B Soil	Meadow - Good Condition	58			0.01	0.62	
B Soil	Open Space - Good Condition	61			0.05	3.33	
B Soil	Open Space - Poor Condition	79			0.02	1.55	
C Soil	Woods - Good Condition	70			0.05	3.45	
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.01	0.88	
	Totals = 0.56 32.76						
				(0.00088	sq mi)	
CN (\		.76 56	Use	e CN =	58.5		

	Curve Number Calculations						
	Project: Barber Cove Development Location: <u>32 & 36 Iron Horse Boulevard, Simsbury, CT</u> SLR #17126.00001						
By: FAB Date: 5/14/21 Checked: Date: Circle one: Present Developed Watershed: PRWS-10							
Soil Name and	Cover Description	CN Value ^{1.}		Area	Product of		
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	CN x Area		
B Soil	Woods - Good Condition	55			0.11	5.81	
B Soil	Meadow - Good Condition	58			1.33	77.36	
B Soil	Open Space - Good Condition	61			0.33	20.26	
D Soil	Woods - Good Condition	77			0.01	0.85	
D Soil	Meadow - Good Condition	78			0.76	59.38	
D Soil	Open Space - Good Condition	80			0.01	0.78	
N/A	Impervious (Buildings)	98			0.01	1.41	
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.25	24.29	
N/A	Water	98			0.1	8.51	
			Tota	als =	2.90	198.65	
				(0.00454	sq mi)	
CN (\	$CN (weighted) = \frac{total product}{total area} = \frac{198.65}{2.90} Use CN = 68.4$						

SLR

	Curve Number Ca Barber Cove Development 32 & 36 Iron Horse Boulevard, Simsbury, CT	lcula	ations	5			
•	SLR #17126.00001 By: FAB Date: 5/14/21 Checked: Circle one: Present Developed Watershed: PRWS-11						
Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product	
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area		
B Soil	Woods - Good Condition	55			0.02	1.02	
B Soil	Meadow - Good Condition	58			0.35	20.33	
B Soil	Open Space - Good Condition	61			3.13	190.84	
C Soil	Open Space - Good Condition	74			0.11	8.33	
D Soil	Woods - Good Condition	77			0.01	0.42	
D Soil	Meadow - Good Condition	78			0.08	6.39	
D Soil	Open Space - Good Condition	80			0.10	7.76	
N/A	Impervious (Buildings w/ Infiltration Galleries)	86			1.98	170.10	
N/A	Impervious (Buildings)	98			0.44	42.93	
N/A	Impervious (drives, sidewalks, parking, patios)	98			4.61	451.77	
	Totals = 10.82 899.89 (0.01691 sq mi)						
CN (\	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{899}{10}$	9.89 .82	• Use	e CN =	83.2		

Location: By:		ecked:			Date:			
Soil Name and Hydrologic Group (appendix A)	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Area Acres Sq. Ft. %	Product of CN x Area			
B Soil	Woods - Good Condition	55			0.01	0.56		
B Soil	Meadow - Good Condition	58			0.01	0.67		
B Soil	Open Space - Good Condition	61			0.07	4.04		
D Soil	Woods - Good Condition	77			0.03	2.12		
D Soil	Meadow - Good Condition	78			0.01	0.39		
D Soil	Open Space - Good Condition	80			0.01	1.11		
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.08	7.64		
	•	-	Tota	als =	0.21	16.53		
				(0.00033	sq mi)		
CN (UN(Weidnied) = USe UN = 1/1.8						

Location: By:	Curve Number Ca Barber Cove Development 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001 FAB Date: 5/14/21 Present Developed	Date:				
Soil Name	Cover Description	C	N Value) ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area	
B Soil	Woods - Good Condition	55			0.01	0.52
B Soil	Open Space - Good Condition	61			0.04	2.18
D Soil	Woods - Good Condition	77			0.01	1.14
D Soil	Open Space - Good Condition	80			0.01	0.40
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.03	3.32
	total product 7.	58		als = (0.10	7.58 sq mi)
CN (י		10	Use	CN =	76.4	J

Location: By:	Curve Number Ca Barber Cove Development 32 & 36 Iron Horse Boulevard, Simsbury, CT SLR #17126.00001 FAB Date: 5/14/21 Present Developed Wate	Date:					
Soil Name	Cover Description	С	N Value	e ^{1.}	Area	Product	
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area		
B Soil	Open Space - Good Condition	61			0.04	2.18	
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.05	5.29	
	Image: Second						
CN (1	$CN \text{ (weighted)} = \frac{\text{total product}}{\text{total area}} = \frac{7.47}{0.09} \text{ Use CN} = \boxed{83.3}$						

	Curve Number Calculations							
	Project: Barber Cove Development							
Location:	Location: 32 & 36 Iron Horse Boulevard, Simsbury, CT							
Bv [.]	SLR #17126.00001 By: FAB Date: 5/14/21 Checked: Date:							
	Circle one: Present <u>Developed</u> Watershed: PRWS-50							
Soil Name	Cover Description	С	N Value	• ^{1.}	Area	Product		
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Figure 2-3 Figure 2-4		Acres Sq. Ft. %	of CN x Area			
B Soil	Woods - Good Condition	55			0.18	9.87		
B Soil	Meadow - Good Condition	58			0.01	0.86		
B Soil	Open Space - Good Condition	61			0.22	13.58		
C Soil	Woods - Good Condition	70			0.02	1.63		
C Soil	Open Space - Good Condition	74			0.01	0.65		
N/A	Impervious (drives, sidewalks, parking, patios)	98			0.01	0.49		
		•	Tota	als =	0.45	27.09		
				(0.00071	sq mi)		
CN (י	weighted) =	.09 45	• Use	e CN =	59.7			

JOB Barber	Cove	SIR	141.17126,00001
SHEET NO. 1	OF	4	SCALE
CALCULATED BY	FAB		DATE5/14/21
CHECKED BY			DATE

Adjusted CI	N-Value wom	Roottops (Build	lings A thru E)	
			djust the CN-value order to account of these buildings	opplied to the for ingiltration
. Standard	Rungf Curre			
Roof top	> 98			
collect ru	noff from the	vooltops. The	ith 32 infiltration chambers are de most from 'each	signed to store
Root top a	(ea = ± 17,25	50 H ²		
V design	= (1.5 in) (14+ (14,250 f 12in)	$(1^2) = 2,156 41^3$	of vunoff / building
· Gallery vo	slume (24'	United Concre	te Leaching Char	mbers + stone)
V = 32	chambers	× 73.45 H ³	$= 2,350 \ \mu^3$	/ building
		µ ³ > 2,156		
• Due to t can be e for each e used for of runoff	the volume p. subtracted two storm event. each of the me stored in the	n the fotal run This will eff ain roof top avea chambers.	e chambers 1.5 neff trom each of ectively reduce the s in order to acc.	5 inches of vuncif the vooltop area opplied CN-value ount for the loss

ЈОВ				
SHEET NO.	2	OF	4	_ SCALE _

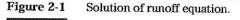
CALCULATED BY_

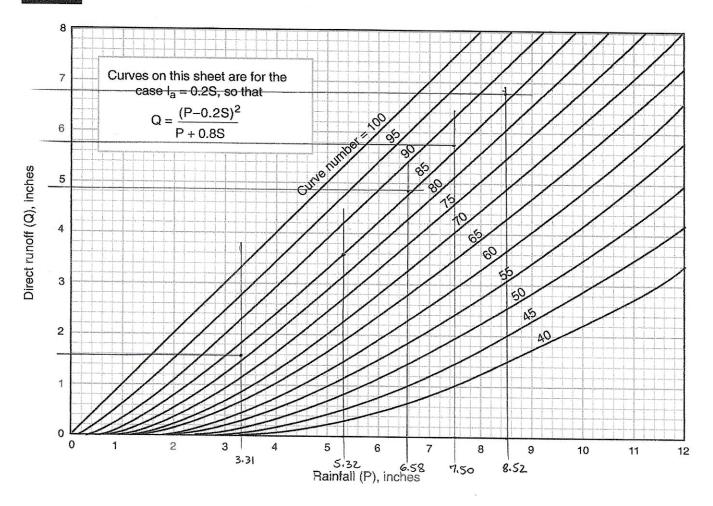
DATE _

			CHECKED BY	DATE
· Adjusted CN	values for ho	of tops :		
Using Table	2-1 and Figure	2-1 of the NRCS T	R-55 Manual, H.	e following
computations,	were prepared :			
	NOAA Rainzall (in)	Runoff Depth	Runoff Depth	Adjusted
Storm Event	Kainfall (in)	$(c_{H}=98)$	minus 1.5 in	CN-value
2-75	3.31	3.08	1,58	82
10-yr 25-yr	5.32 6.58	5.08 6.34	3.58	85
50-10	7,50	7.26	5.76	86
100-42	8.52	8.28	6.78	86
• Use an ad	ijusted CN-value	of 86 for the	5 main propose	d buildings

100

Technical Release 55 Urban Hydrology for Small Watersheds


					Runo	ff depth f	or curve n	umber of		- 1.			
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.7
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3,56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

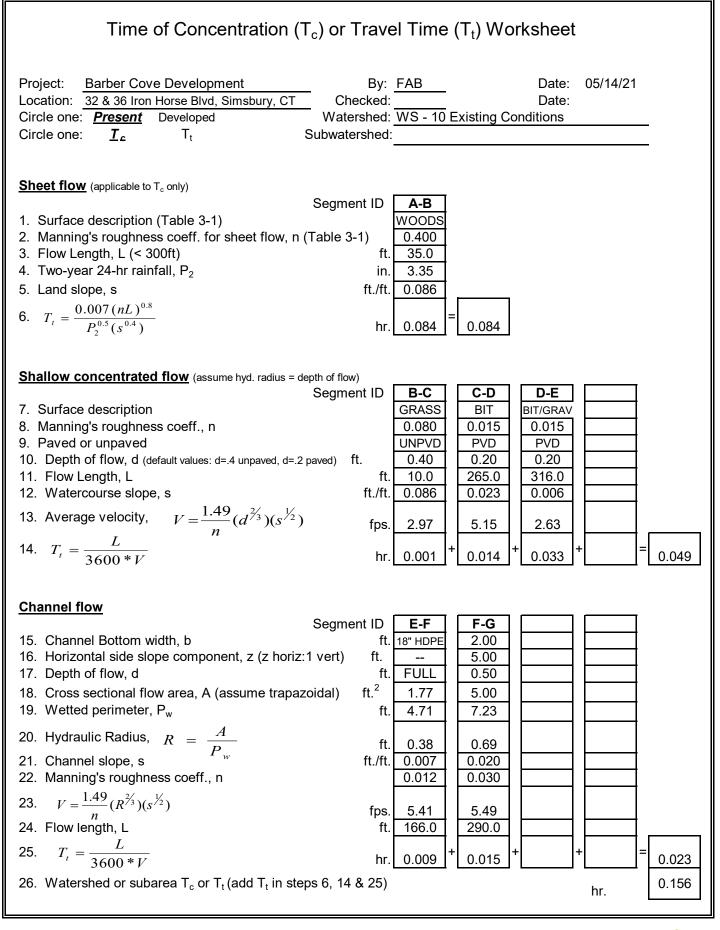

Table 2-1	Runoff depth for selected CN's and rainfall amounts 1^{\prime}
-----------	--

Estimating Runoff

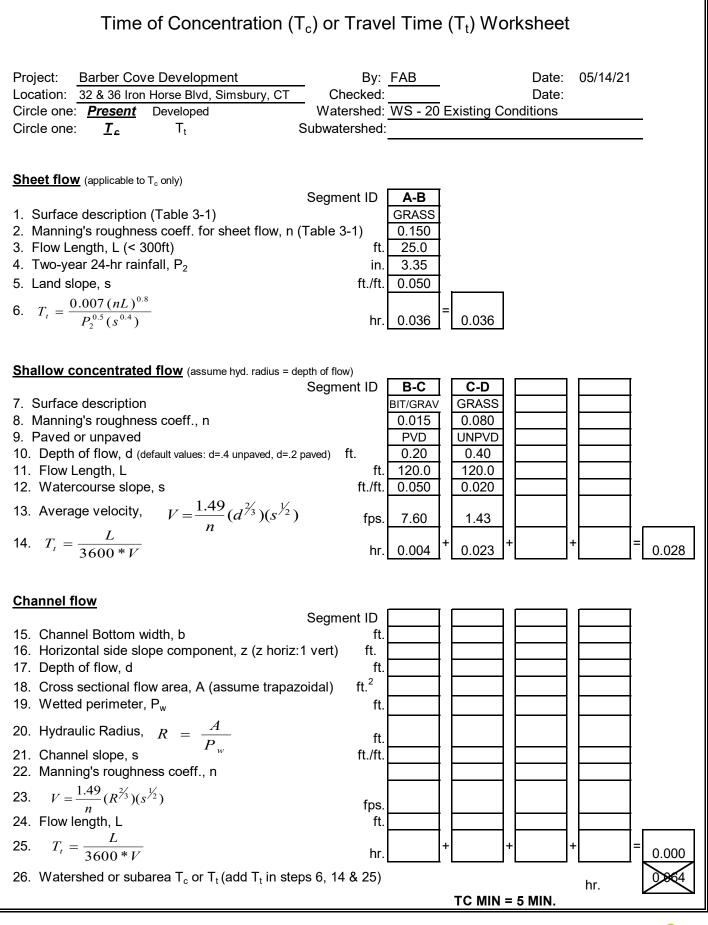
Technical Release 55 Urban Hydrology for Small Watersheds

4/4

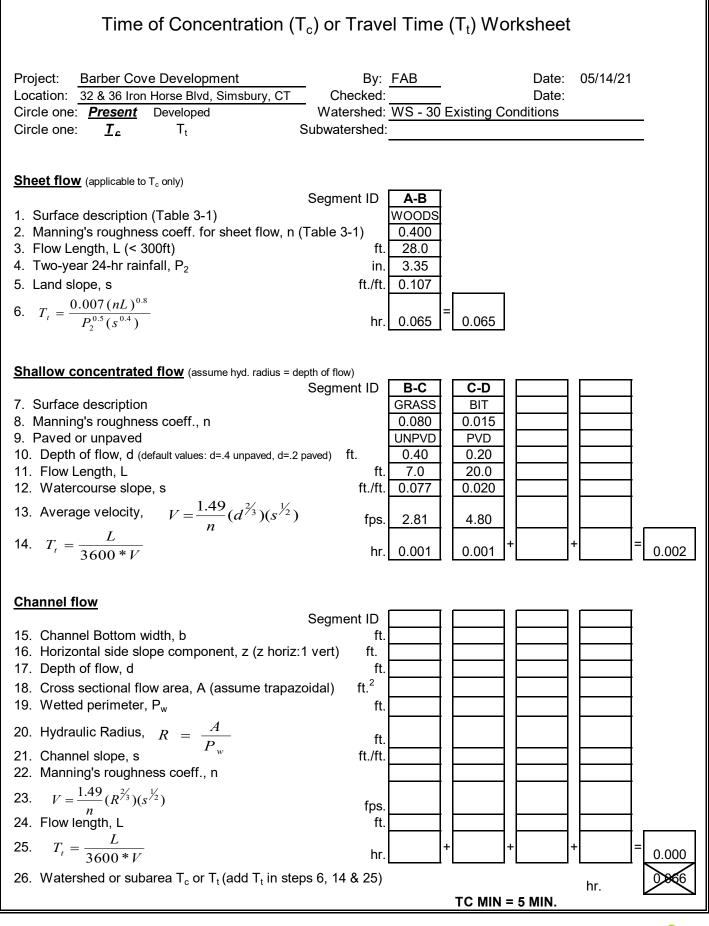
Cover type

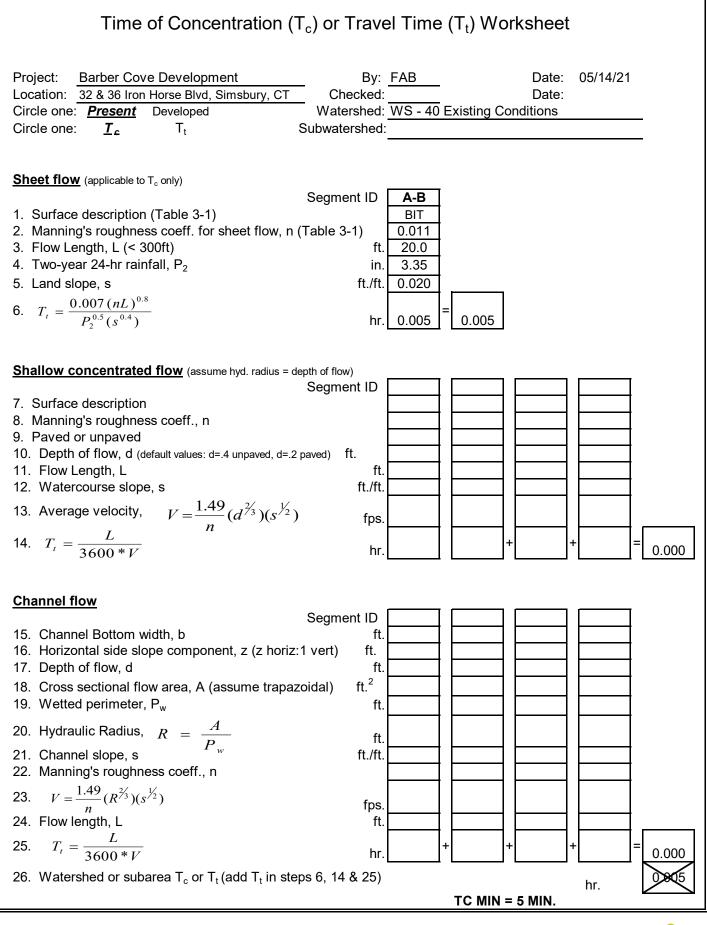

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

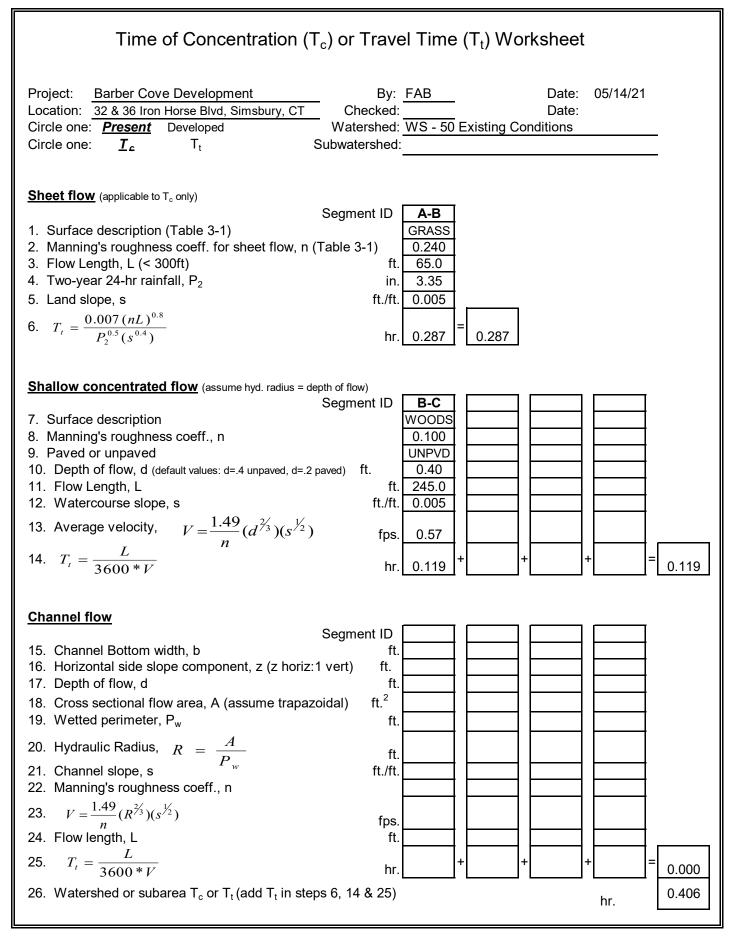
Treatment

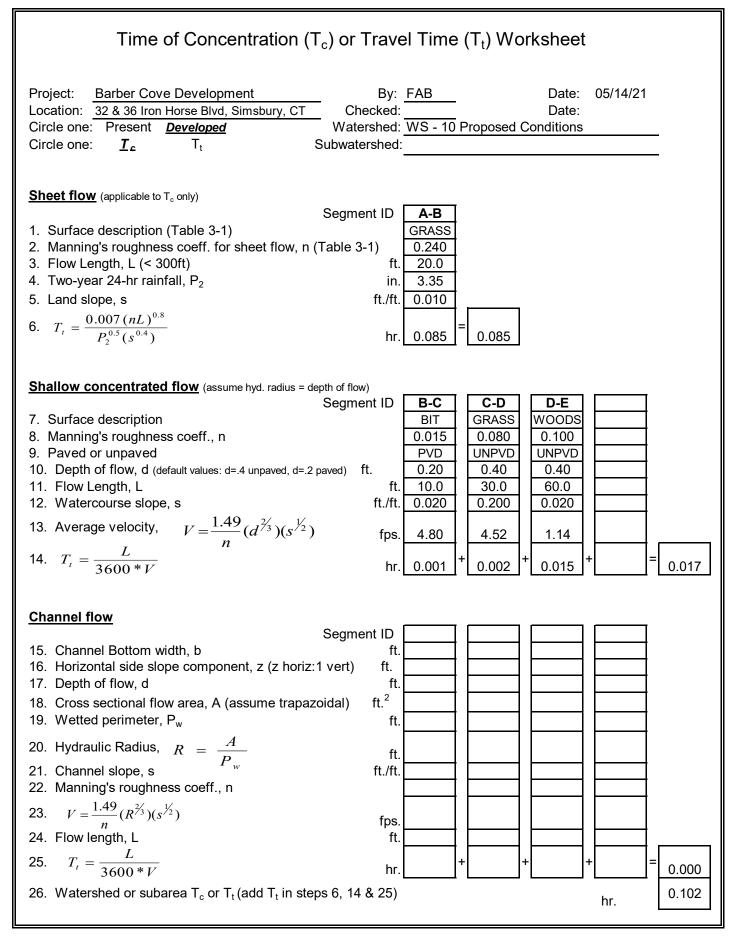

Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.

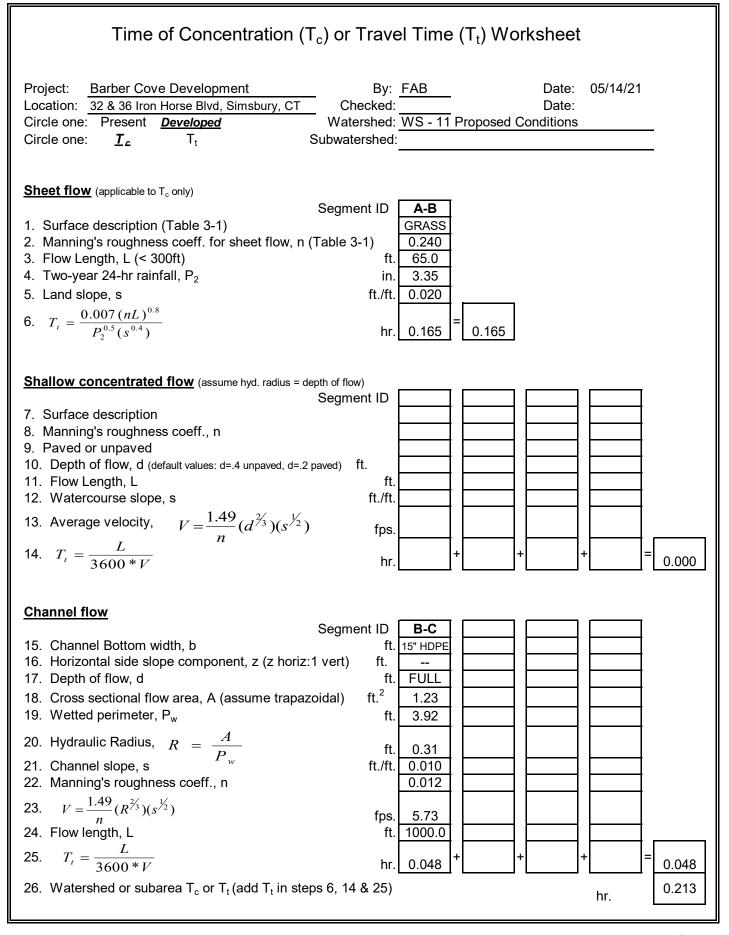
Hydrologic condition

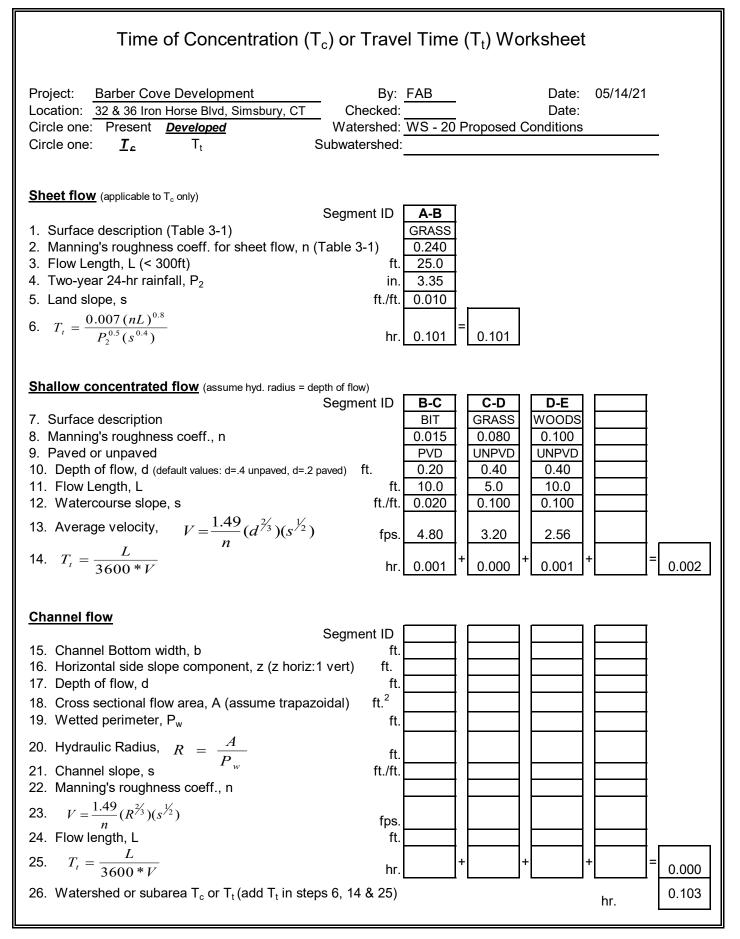

Hydrologic condition in indicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. *Good* hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness.

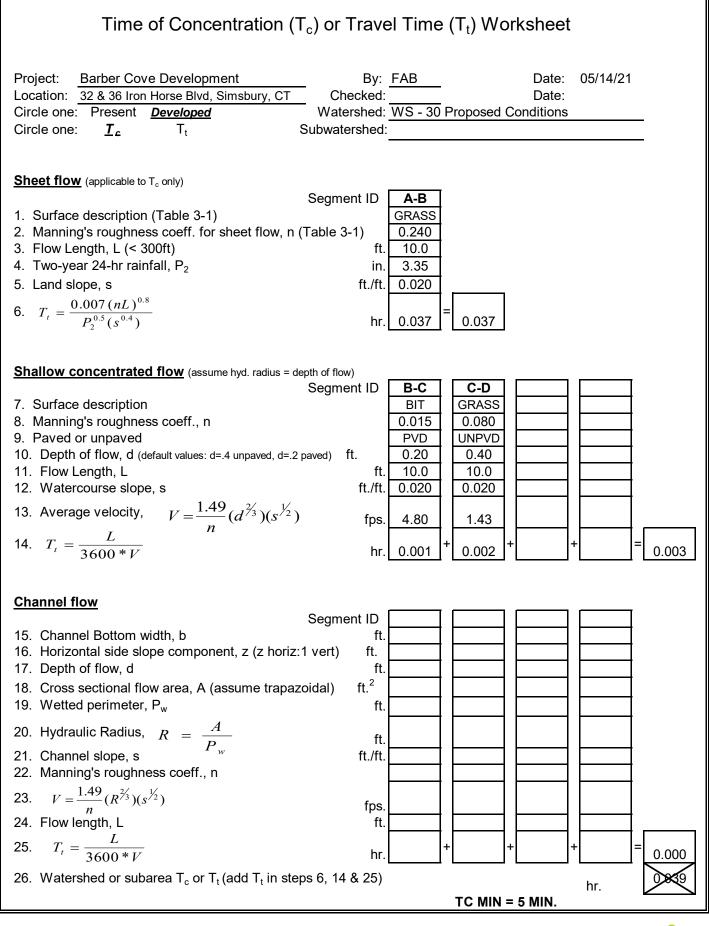

SLR^O

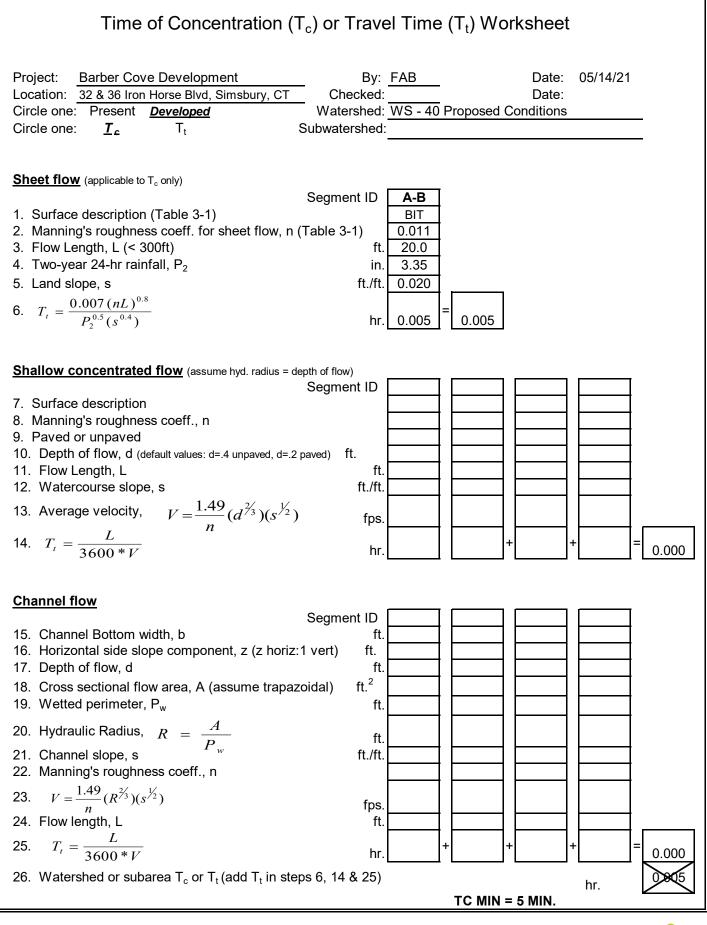


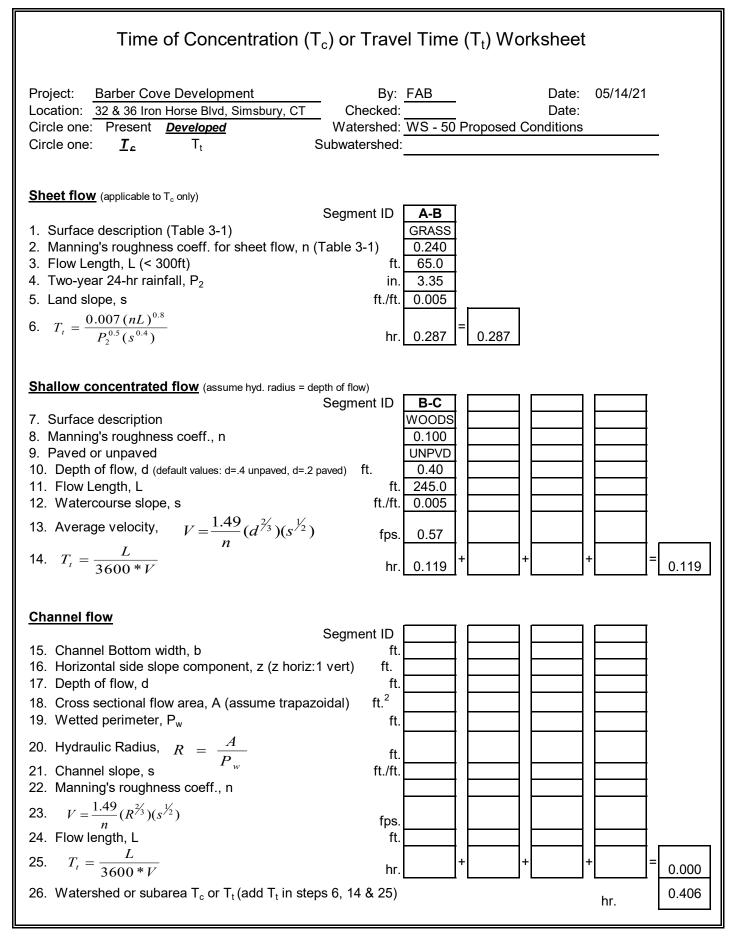








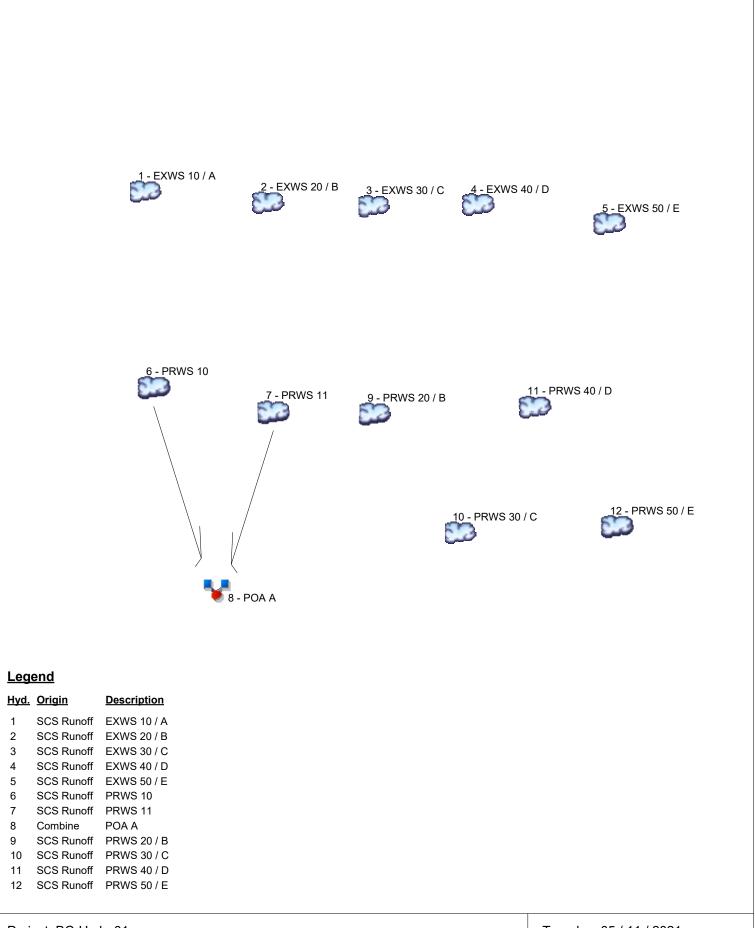




ATTACHMENT I

HYDROLOGIC ANALYSIS – COMPUTER MODEL RESULTS

Drainage Report


Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

1

Project: BC-Hydro01.gpw

Tuesday, 05 / 11 / 2021

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020	Tuesday, 05 / 11 / 2021
Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year Summary Report	3
10 - Year Summary Report	4
25 - Year Summary Report	5
50 - Year Summary Report	
100 - Year Summary Report	

Hydrograph Return Period Recap Hydraffow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. H No.	Hydrograph type	Inflow hyd(s)		1	1	Hydrograph Description					
	(origin)	1190(5)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			23.01			46.47	61.47	72.43	84.55	EXWS 10 / A
2	SCS Runoff			0.612			1.263	1.682	1.988	2.328	EXWS 20 / B
3	SCS Runoff			0.216			0.672	1.002	1.255	1.543	EXWS 30 / C
4	SCS Runoff			0.199			0.362	0.463	0.536	0.617	EXWS 40 / D
5	SCS Runoff			0.105			0.516	0.858	1.129	1.446	EXWS 50 / E
6	SCS Runoff			2.123			6.256	9.209	11.46	14.02	PRWS 10
7	SCS Runoff			17.10			34.59	45.78	53.95	63.00	PRWS 11
8	Combine	6, 7		19.09			40.18	53.90	64.01	75.24	POA A
9	SCS Runoff			0.284			0.637	0.871	1.044	1.237	PRWS 20 / B
10	SCS Runoff			0.186			0.428	0.589	0.709	0.843	PRWS 30 / C
11	SCS Runoff			0.159			0.319	0.421	0.495	0.578	PRWS 40 / D
12	SCS Runoff			0.099			0.448	0.730	0.953	1.212	PRWS 50 / E

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	23.01	3	726	76,536				EXWS 10 / A
2	SCS Runoff	0.612	3	726	2,040				EXWS 20 / B
3	SCS Runoff	0.216	3	726	843				EXWS 30 / C
4	SCS Runoff	0.199	3	726	668				EXWS 40 / D
5	SCS Runoff	0.105	3	747	788				EXWS 50 / E
6	SCS Runoff	2.123	3	726	8,020				PRWS 10
7	SCS Runoff	17.10	3	729	67,349				PRWS 11
8	Combine	19.09	3	729	75,369	6, 7			POA A
9	SCS Runoff	0.284	3	726	959				PRWS 20 / B
10	SCS Runoff	0.186	3	720	427				PRWS 30 / C
11	SCS Runoff	0.159	3	726	527				PRWS 40 / D
12	SCS Runoff	0.099	3	747	702				PRWS 50 / E
BC	BC-Hydro01.gpw					Period: 2 Ye	ear	Tuesday, 0	05 / 11 / 2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	46.47	3	726	156,008				EXWS 10 / A		
2	SCS Runoff	1.263	3	726	4,227				EXWS 20 / B		
3	SCS Runoff	0.672	3	726	2,288				EXWS 30 / C		
4	SCS Runoff	0.362	3	726	1,249				EXWS 40 / D		
5	SCS Runoff	0.516	3	738	2,743				EXWS 50 / E		
6	SCS Runoff	6.256	3	726	21,154				PRWS 10		
7	SCS Runoff	34.59	3	729	136,872				PRWS 11		
8	Combine	40.18	3	729	158,025	6, 7			POA A		
9	SCS Runoff	0.637	3	726	2,120				PRWS 20 / B		
10	SCS Runoff	0.428	3	717	966				PRWS 30 / C		
11	SCS Runoff	0.319	3	726	1,070				PRWS 40 / D		
12	SCS Runoff	0.448	3	738	2,341				PRWS 50 / E		
BC-	BC-Hydro01.gpw					Period: 10 \	/ear	Tuesday, 0	Tuesday, 05 / 11 / 2021		

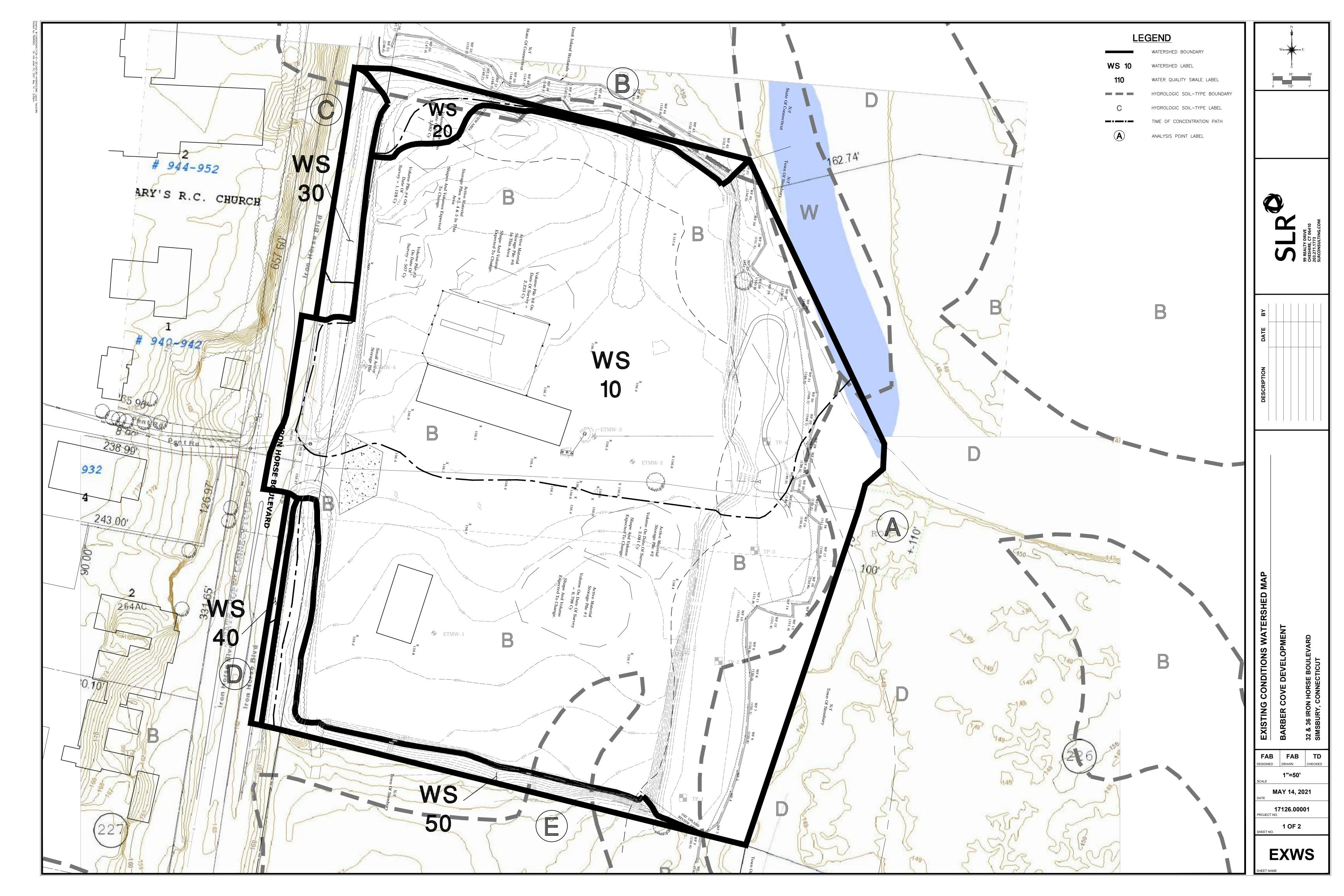
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	61.47	3	726	208,576				EXWS 10 / A
2	SCS Runoff	1.682	3	726	5,683				EXWS 20 / B
3	SCS Runoff	1.002	3	726	3,353				EXWS 30 / C
4	SCS Runoff	0.463	3	726	1,623				EXWS 40 / D
5	SCS Runoff	0.858	3	738	4,308				EXWS 50 / E
6	SCS Runoff	9.209	3	726	30,724				PRWS 10
7	SCS Runoff	45.78	3	729	182,810				PRWS 11
8	Combine	53.90	3	729	213,534	6, 7			POA A
9	SCS Runoff	0.871	3	726	2,912				PRWS 20 / B
10	SCS Runoff	0.589	3	717	1,337				PRWS 30 / C
11	SCS Runoff	0.421	3	726	1,429				PRWS 40 / D
12	SCS Runoff	0.730	3	738	3,636				PRWS 50 / E
BC	BC-Hydro01.gpw					Period: 25 \	/ear	Tuesday, 0	05 / 11 / 2021

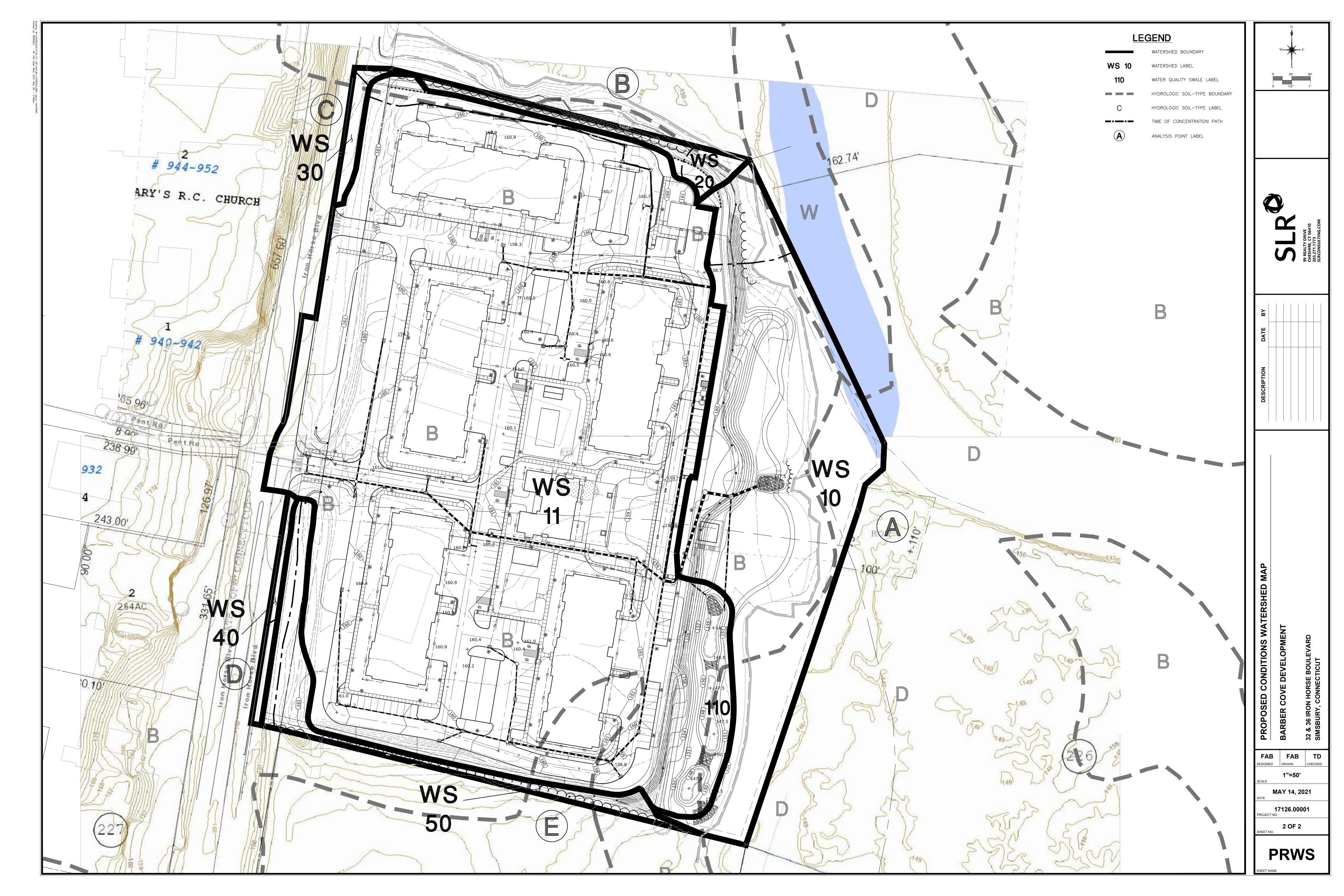
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	72.43	3	726	247,684				EXWS 10 / A
2	SCS Runoff	1.988	3	726	6,768				EXWS 20 / B
3	SCS Runoff	1.255	3	726	4,179				EXWS 30 / C
4	SCS Runoff	0.536	3	726	1,898				EXWS 40 / D
5	SCS Runoff	1.129	3	738	5,563				EXWS 50 / E
6	SCS Runoff	11.46	3	726	38,119				PRWS 10
7	SCS Runoff	53.95	3	729	216,973				PRWS 11
8	Combine	64.01	3	729	255,092	6, 7			POA A
9	SCS Runoff	1.044	3	726	3,508				PRWS 20 / B
10	SCS Runoff	0.709	3	717	1,617				PRWS 30 / C
11	SCS Runoff	0.495	3	726	1,695				PRWS 40 / D
12	SCS Runoff	0.953	3	738	4,669				PRWS 50 / E
BC-	BC-Hydro01.gpw					Period: 50 Y	/ear	Tuesday, (05 / 11 / 2021

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	84.55	3	726	291,532				EXWS 10 / A
2	SCS Runoff	2.328	3	726	7,986				EXWS 20 / B
3	SCS Runoff	1.543	3	726	5,130				EXWS 30 / C
4	SCS Runoff	0.617	3	726	2,204				EXWS 40 / D
5	SCS Runoff	1.446	3	738	7,041				EXWS 50 / E
6	SCS Runoff	14.02	3	726	46,615				PRWS 10
7	SCS Runoff	63.00	3	729	255,267				PRWS 11
8	Combine	75.24	3	729	301,881	6, 7			POA A
9	SCS Runoff	1.237	3	726	4,180				PRWS 20 / B
10	SCS Runoff	0.843	3	717	1,933				PRWS 30 / C
11	SCS Runoff	0.578	3	726	1,994				PRWS 40 / D
12	SCS Runoff	1.212	3	738	5,882				PRWS 50 / E
BC-Hydro01.gpw					Return F	Period: 100	Year	Tuesday, 0	15 / 11 / 2021

ATTACHMENT J

WATERSHED MAPS


Drainage Report


Barber Cove Development

32 and 36 Iron Horse Boulevard

Simsbury, Connecticut

May 28, 2021

