Stormwater Management Report Westminster School

Track & Field Renovations

Simsbury, Connecticut

Submitted by: SMRT Architects and Engineers March 1, 2022 Project # 21263 smrtinc.com

TABLE OF CONTENTS

1 - PROJECT NARRATIVE	2
2 - STORMWATER ANALYSIS	3
3 - STORMWATER COMPLIANCE	4
4 - CONCLUSIONS	7
5 - REFERENCES	7

APPENDICES

Appendix A – Pre-Development Conditions Analysis & Watershed Plan

Appendix B – Post-Development Conditions Analysis & Watershed Plan

Appendix C – Town of Simsbury Site Planning and Design Criteria Checklist

Appendix D – Stormwater Facilities- Operation, Inspection, and Maintenance Plan

1 - PROJECT NARRATIVE

Introduction

The existing equal quadrant running track was constructed approximately 20-25 years ago and needs repair/renovation. Since the construction of the track, Westminster has eliminated its football program, and the field's narrow width (straightaways and arcs are each 100m long) precludes use by many other sports. Currently the natural grass field is lined for soccer, playing only at 195' in width. The project is to replace the existing track, reconstruct the field within the track with a different surface and provide minor site improvements to support the track use/operations.

The School went through a concept study phase to determine impacts of field widths on track layout and overall site impacts. Based on those studies, the school selected a field dimension larger than the existing field though less than maximum size allowed by current athletic rules in an effort to balance the impact to the site with the increased playability for sports.

The general location and orientation of the existing track and field is to remain unchanged, but modifications will be required to meet the program needs of the facility. No new programs will be created.

Project Location

The Westminster School campus is approximately 182 acres. The project site is located towards the highest point of campus. The site slopes significantly down to the east of the track. The track is surrounded to the south, west, and north by other athletic fields. The slope is relatively flat to the north and south of the track, with a slight slope up to the west.

Existing Soils Conditions

Based on the previous athletic improvements on campus, the soils on campus have typically been classified as Hydrologic Soils Group A:

• Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Based on the previous drainage report, an infiltration rate of 2 in/hr was used to size the existing infiltration units. Over the last 20 years, no issues with the existing structures have been noted, so the design team will use this same infiltration rate to size the additional infiltration structures that will be required to manage the additional impervious area proposed.

Methodology and Modeling Assumptions

Runoff and routing calculations have been performed for the watershed areas impacted by the project in both the pre-development and post-development conditions using HydroCAD© software. The time of concentration and runoff curve number calculations have been determined using the method described in NRCS Technical Release 55 – Urban Hydrology for Small Watersheds (TR-55). Time of concentration calculations have been amended where the value given by the TR-55 method is less than five minutes. In these cases a standard minimum value of five minutes has been used to keep this parameter within the acceptable working range of the model.

Design rainfall events have been modeled using the SCS Type III hydrograph for 24-hour duration storms. The rainfall depth for each return period is taken from the 2004 Connecticut Stormwater Quality Manual. The rainfall depth values for standard design storm frequencies are given in the table below.

24-Hour Rainfall Depths for Hartford County, Connecticut at Design Storm Frequencies						
2004 Connecticut Stormwater Quality Manual						
Frequency	2-Year	10-Year	25-Year	100-Year		
Rainfall Depth(in)	3.2	4.7	5.5	6.9		

2 - STORMWATER ANALYSIS

2.1 Pre-Development Conditions

The pre-development condition has been analyzed based on two (2) design points.

- Design Point 1 (DP-1) is the slope to the east of the existing track. The two outlets from the existing infiltration systems outlet along this slope.
- Design Point 2 (DP-2) is the area to the west of the track where stormwater is collected and infiltrated by several yard drains and subsurface infiltration units.

The pre-development conditions analysis has been broken out into four (4) subcatchment areas:

- SC-101A includes the existing natural grass playing field located within the track. This area has been broken into two areas: SC-101A-1 includes the north portion which flows to the existing subsurface infiltration system (I-1) and SC-101A-2 includes the south portion which flows to the existing subsurface infiltration system (I-2). The majority of the runoff infiltrates directly into the subsoils, and any overflow outlets to the two 6" pipes along the east slope.
- SC-101B includes the existing track. Similar to the field, this area is broken into two areas with runoff from SC-101B-1 flowing to I-1 and SC-101B-2 flowing to I-2. The majority of the runoff infiltrates directly into the subsoils, and any overflow outlets to the two 6" pipes along the east slope
- SC-101C includes the lawn area to the east of the track. This area flows overland down the slope to the east.
- SC-102A includes the existing runways and lawn area to the west of the track. This area drains to a series of yard drains/drywells where the runoff is 100% infiltrated.

Detailed descriptions of the subcatchment areas can be found in the HydroCAD runoff reports and on the pre-development watershed plan. Please refer to Appendix A for HydroCAD report and Sheet C-120 Pre-Development Watershed Map.

2.2 Post-Development Conditions

The same total drainage area and design points were analyzed in the post-development condition. The nature and use of the project area is not changing greatly from the pre-development condition. The project proposes to reconstruct the existing track and convert the natural grass to synthetic turf. A small new storage garage and replacement of the existing filming platform is also proposed.

Approximately 22,583 sf (0.52 acres) of new impervious surfacing is proposed as part of the athletic improvements:

- 16,747 sf of additional area of running track
- 5,735 sf of new concrete sidewalk/pavement
- 101 sf of additional building area/filming platform

There will be no vehicular use aside from the minimal use of maintenance equipment, so there is no concern of oil spills or other hazardous materials typical of parking lots/driveways.

The synthetic turf field is included in the model as Direct Entry (CN 98) since there is no depression storage, or evapotranspiration loss of rainfall that lands on the structure. Rainfall will drain directly through the surface of the field to the underlying base layer of highly porous crushed stone. The stone base will act as a large storage reservoir, detaining rainfall that enters the structure, before allowing it to infiltrate to underlying soils. It should be noted that the stone layer extends 6 inches beneath the field underdrain piping, providing significant storage/infiltration volume prior to *any* stormwater discharging to the piped drainage system. The stone base layer is modeled as a pond with 33% voids. The underdrains are modeled as multiple vertical orifices that discharge to the larger collector pipes that collect and convey stormwater around the perimeter of the proposed turf field.

The post-development conditions analysis has been broken out into four (4) subcatchment areas:

- SC201A includes the synthetic turf field. As described above, runoff flows vertically through the field surface into the stone base below. The majority of the runoff will infiltrate directly into the subgrade, and any excess runoff will be collected by the panel drains and directed to the outlet on the east slope.
- SC201B includes the expanded track area. This area is further subdivided into three areas. The north portion flows to I-1 and the south area flows to I-2 as in the existing condition. The west side of the track is directed to the new subsurface infiltration gallery (SIG-1). Any runoff that does not infiltrate will outlet to the east slope.
- SC201C is similar to the pre-development condition and includes the lawn area to the east of the track. Runoff flows overland down the slope to the east.
- SC202A is also similar to the pre-development condition and is collected by the existing yard drains/drywells where the runoff is infiltrated.

Detailed descriptions of the subcatchment areas can be found in the HydroCAD runoff reports and on the post-development watershed plan. Please refer to Appendix B for HydroCAD report and Sheet C-121 Post-Development Watershed Map.

3 - STORMWATER COMPLIANCE

For ease of the Town's review, the design team has mirrored the format of this section with Section 1.2 "Performance Standards" of the Simsbury Stormwater Article.

1.2A: Planning and Site Design Criteria Checklist

• The completed Town of Simsbury Site Planning and Design Criteria Checklist is included in Appendix C of this report.

1.2B: Stormwater Quantity and Quality Requirements

- 1- Redevelopment Not Applicable
- 2- Peak Rate
 - Post-development peak rate of runoff not to exceed the pre-development peak rate of runoff for the 2-, 10-, 25-, and 100-year, 24-hour design storm events.
 - The runoff and routing analysis described in Section 2 show that there will be no increase in peak runoff at DP-1 or DP-2 at the 2-year, 10-year, 25-year, and 100-year design storms.

Peak Flow Rate (cfs)						
	DP-1 DP-2					
Rainfall Event	<u>Pre</u>	<u>Post</u>	Δ	Pre	<u>Post</u>	≙
2-year	0.10	0.02	-0.08	0.01	0.00	-0.01
10-year	0.57	0.48	-0.09	0.13	0.01	-0.12
25-year	1.83	1.02	-0.81	0.33	0.05	-0.28
100-year	3.49	3.43	-0.06	0.90	0.20	-0.70

• For information, the runoff volume comparison is provided below for the 2-year, 10-year, 25-year and 100-year storms.

Runoff Volume (ac-ft)						
	DP-1 DP-2			DP-2		
Rainfall Event	Pre	<u>Post</u>	Δ	Pre	<u>Post</u>	Δ
2-year	0.006	0.003	-0.003	0.004	0.000	-0.004
10-year	0.046	0.042	-0.004	0.025	0.006	-0.019
25-year	0.105	0.095	-0.010	0.042	0.012	-0.030
100-year	0.257	0.221	-0.036	0.080	0.026	-0.054

3- Recharge Volume

- Since the project is not located with the Simsbury Center and the Site BMP Incentive Credits are not applicable to this project, the Recharge Volume calculation from the 2004 Connecticut Stormwater Manual was used.
- <u>Required Groundwater Recharge Volume Calculation:</u>

WQV=	(D*A*I)/12		Where	D=Depth of runoff to be recharged
				A=Site Area (acres)
				I=Post development site imperviousness
D=	0.60	in		(decimal)
Area=	4.419	ас		
Imp=	0.3662		The	project area is located entirely in A soils.
<u>GRV=</u>	<u>0.081</u>	<u>ac-ft</u>		
	<u>3,525</u>	<u>cf</u>		

- The Groundwater Recharge Volume (3,525 cf) is treated by the subsurface infiltration galley (SIG-1).

4- Water Quality

- The development shall treat stormwater runoff to achieve the following minimum pollutant removal requirements at each discharge point based on the Water Quality Volume as defined below:
 - 80% total suspended soils (TSS)
 - 40% removal of total phosphorus (TP)
 - 30% removal of total nitrogen (TN)
- Since the project is not located with the Simsbury Center and the Site BMP Incentive Credits are not applicable to this project, the Water Quality Volume calculation from the 2004 Connecticut Stormwater Manual was used.

- <u>Required Water Quality Volume Calculation:</u>

WQV =	(1" x R x A)/2	12	Where	: A =	- Area
				R =	- 0.05 + 0.0091
				=	% Impervious
Area =	4.419	ас			
% lmp. =	36.62				
R =	0.38				
<u> WQV =</u>	<u>0.139</u>	<u>ac-ft</u>			
	<u>6,066</u>	<u>cf</u>			

- The overall area used above was the total subcatchment area of the project site. The impervious area includes the new track surfacing, concrete sidewalks, filming platform, and small garage. As noted previously, the impervious areas proposed are not for vehicular use. So apart from the occasional use of maintenance equipment, there is minimal concern of oil spills or other hazardous materials typical of parking lots/driveways.
- The two existing infiltration systems and the new subsurface infiltration galley (SIG-1) are able to provide more storage volume than required for the Water Quality Volume.

Gallery Identification	<u>Units</u>	Storage Provided
New Infiltration System (SIG-1)	(182) SC-310 StormTech Chambers	4,948 cf
Ex. North Infiltration Units (I-1)	(81) Infiltrator Units	2,061 cf
Ex. South Infiltration Units (I-2)	(214) Infiltrator Units	5,355 cf
	TOTAL STORAGE PROVIDED	12,364 cf

- Subsurface Infiltration Gallery (SIG-1) is detailed on CG501. Additional information regarding SIG-1 can also be found in the Post-Dev HydroCAD report.
- Information regarding the previously installed Infiltrator Units is included in this report for reference. The StormTech SC-310 Chambers were used for modeling the existing two systems since the dimensions and capacity are very similar.
- Pollutant Removal
 - While the synthetic turf field section is not a formal stormwater BMP, the stone section acts similar to a sand filter. Similar pollutant removals are to be expected from the runoff that flows through the turf section. Based on the Table 1.3 in the Simsbury Stormwater Article, a sand filter provides: 86% TSS removal, 59% TP removal, and 32% TN removal. These values meet the Section 1.2.B.4 Water Quality requirement.
- 5- Conveyance
 - Drainage conveyance systems must be designed to provide adequate passage for at least the 25year, 24-hour design storm event. Emergency outlets must safely pass the post-development peak runoff from the 100-year design storm event.
 - The proposed improvements (Subsurface Infiltration Gallery, SIG-1) is designed to handle the 25-year and 100-year design storm events.
- 6- Offsite Mitigation and Stormwater Mitigation Bank Not Applicable
- 7- Site BMP Incentive Credits Not Applicable

1.2C: Design and Construction Requirements

BMP Requirements

No formal water quality treatment BMPs are proposed for this project. However, in an effort to further promote infiltration and provide peak flow attenuation, the existing and new infiltration chambers are adequately sized to handle the Recharge Volume and the Water Quality Volume.

- The stone base under the synthetic turf field will act as a large storage reservoir, detaining rainfall that enters the field, before allowing it to infiltrate to underlying soils. The field acts in a similar fashion to a filtering treatment system, so similar pollutant removals will occur.
- Irrigation Not Applicable
- Special Detention Areas Not Applicable

1.3: Maintenance

• An Operation, Inspection, and Maintenance Plan have been provided in Appendix D of this report.

1.4: Illicit Discharges and Connections

• There will be not illicit or illegal discharges or connections from the project site.

4 - CONCLUSIONS

The runoff and routing calculations demonstrate that the development will decrease the peak runoff from the site during design storm events of, 2-year, 10-year, 25-year and 100-year return periods. The installation of the subsurface infiltration galleries (SIG-1) as well as the existing infiltration units will treat the water quality volume and the recharge volume.

Based on this analysis, the project site will not negatively impact the downstream watersheds and meets the requirements of the Simsbury Stormwater Article.

5 - REFERENCES

- Simsbury Stormwater Article (Revision-2: September 28, 2011)
- CT Stormwater Manual (2004 and as amended)
- Connecticut Guidelines for Soil Erosion and Sediment Control (2002)
- NRCS Technical Release 378
- NRCS Web Soil Survey

Appendix A

Pre-Development Conditions Analysis & Watershed Plan

Appendix B

Post-Development Conditions Analysis & Watershed Plan

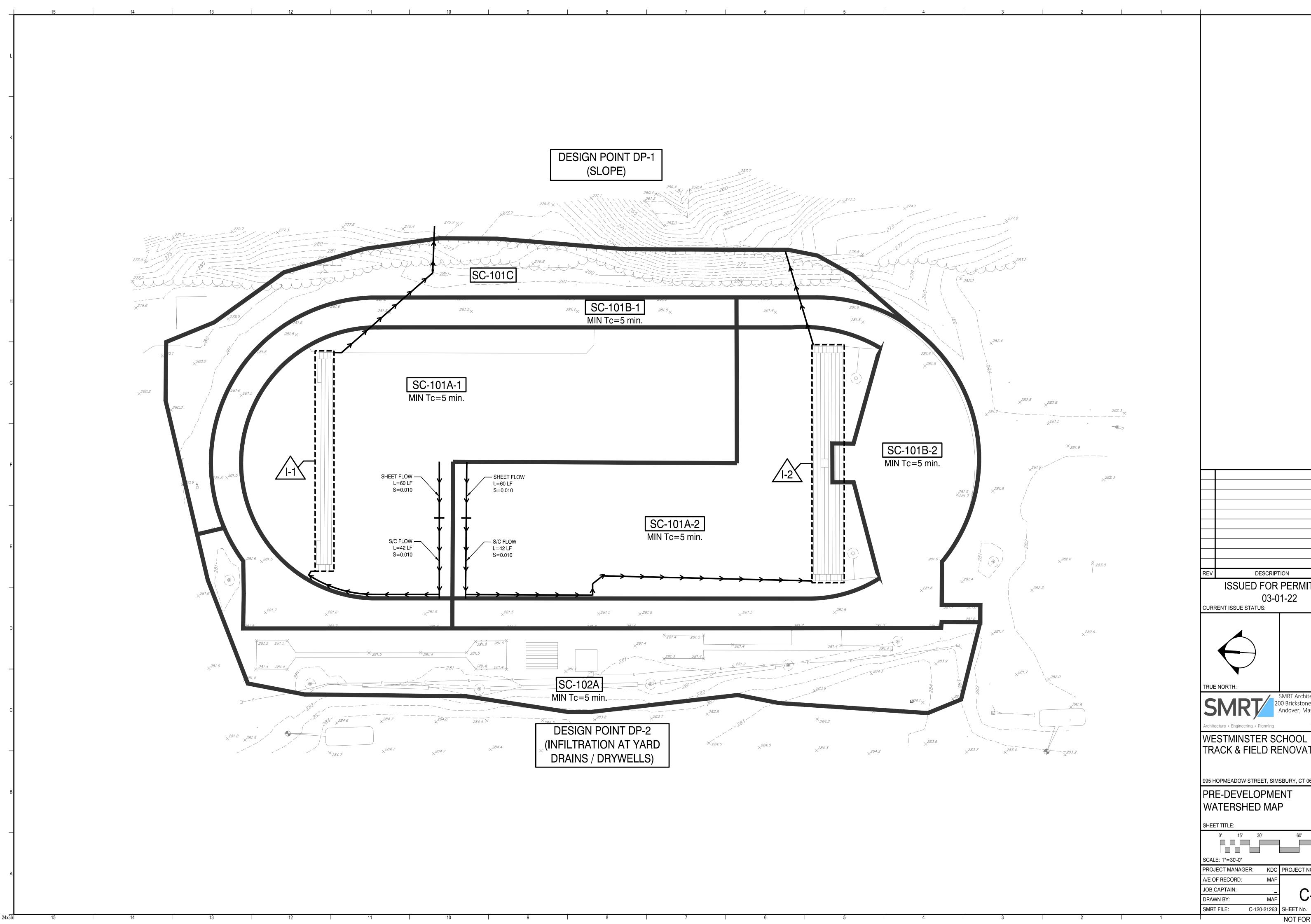
Appendix C

Town of Simsbury Site Planning and Design Criteria Checklist

Appendix D

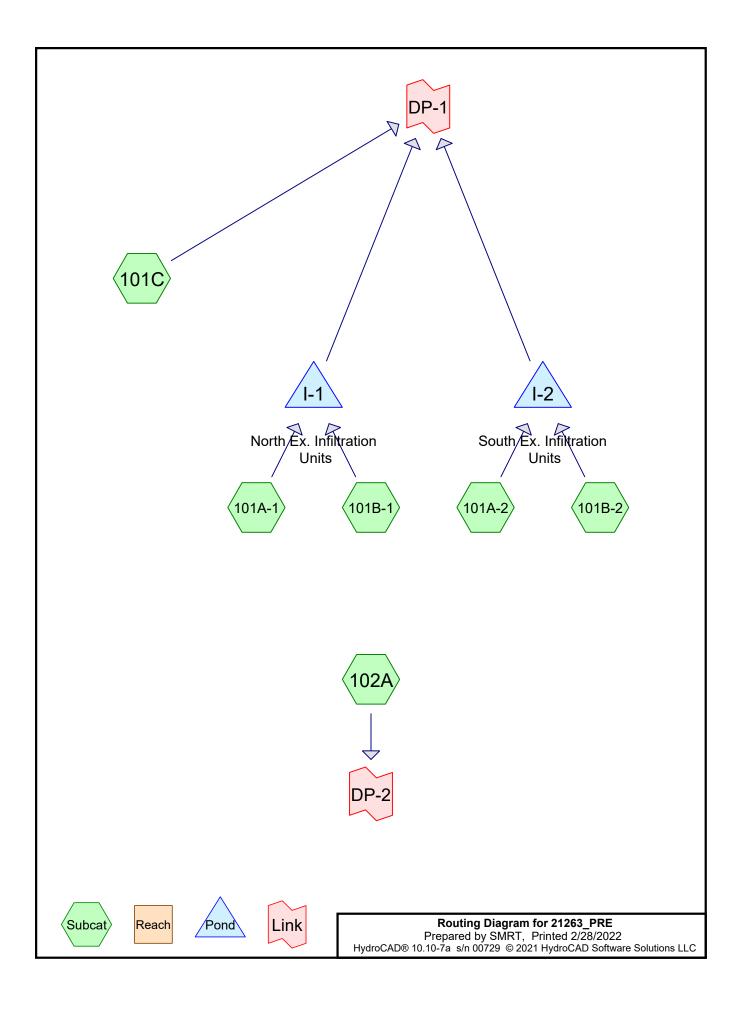
Stormwater Facilities- Operation, Inspection, and Maintenance Plan

Conformance with the following criteria shall be initialed in the spaces provided by a registered Connecticut Professional Engineer. If site conditions partially or completely prevent implementation of any specific criteria, documentation demonstrating technical infeasibility must be provided.


	Item #	Description	Verified	Technically Infeasible	Not Appilcable
	1.1	Development avoids sensitive natural resource areas and their buffers, including but not limited to: designated natural resource protection areas, riverfront buffers, steep slopes, wildlife habitats, and forests.	х		
Watershed	1.2	Development and redevelopment is within Simsbury Center or other areas designated to be compact and walkable, including developments utilizing the Simsbury Center Code, Planned Area Development Designation, or other cluster development designs, or other compact and walkable areas as determined by Town Staff in order to concentrate development and minimize total impervious area in the watershed.			x
	1.3	Public open space and recreation areas are designed as Special Detention Areas per Stormwater Article Section 1.2C to provide both public use and neighborhood-scale stormwater mitigation.			х
	1.4	Neighborhood planning within Simsbury Center follows the general principles established in the Simsbury Center Watershed Planning and Design Framework.			х
Neighborhood	2.1	An existing conditions plan is provided documenting sensitive natural resources including existing wetlands, streams, ponds, vernal pools, flood zones, soil types and infiltration rates, steep slopes, treelines and trees 12" caliper and greater, septic tanks and fields, and natural topography.	х		
Nei	2.2	Using the existing conditions plan as a guide, development is located to maximize preservation of contiguous natural sensitive areas.	х		

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
	2.3	Using the existing conditions plan as a guide, development and stormwater management systems are located such that centralized volume mitigation and flood control such as detention/retention basins, if required, is located towards the edges of compact development areas or in adjacent open space.	х		
Neighborhood (continued)	2.4	Community open space is sited in areas of well- draining soils, located in coordination with topography to receive stormwater runoff from new development, and designed as a Special Detention Area per Section 1.1.2C to provide neighborhood-scale stormwater infiltration and flood control.			х
Neighbor	2.5	Existing stands of mature trees are incorporated into the neighborhood and site design and preserved to the maximum extent practicable. Tree protection provisions are submitted as required by Landscaping Section 9.02.			х
	2.6	Development is alley-loaded and/or incorporates parking lots sited behind buildings.			х
	2.7	The neighborhood parking approach incorporates shared parking strategies, on-street parking, and centralized structured parking to minimize new impervious area.			х
	3.1	New thoroughfares and retrofit of existing thoroughfares meet Section 1.2B Water Quality and Quantity requirements.			х
ets	3.2	Thoroughfare and driveway pavement widths are the minimum required to accommodate public safety and emergency access.			х
Green Streets	3.3	Rear lanes, alleys, emergency access lanes, on- street parking spaces, sidewalks, pedestrian and multi-use paths, and residential driveways are constructed of permeable materials using a section appropriate for structural and drainage requirements. In areas of poorly draining soils the permeable design may still provide water quality treatment as a "flow-through" condition with an underdrain.			Х

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
	3.4	Street tree design incorporates stormwater management practices such as tree box filters to filter and infiltrate stormwater runoff from adjacent impervious areas.			х
	3.5	Street trees are provided with adequate soil volume and structural soil design to support long- term root growth and tree canopy without excessive impact to utilities or sidewalks.			х
	4.1	Soil testing completed by a Certified Soil Scientist is enclosed, and development is planned such that new impervious surfaces are located on less permeable soils, maximizing preservation of undisturbed well-draining soils.			х
	4.2	Infiltration BMPs are located in areas of well- draining soils.	х		
Site Design	4.3	Building roof downspouts discharge runoff to vegetated areas. Credit for Self-Treating and/or Self-Retaining Areas may be applied per the requirements of Section 1.1.2B.			х
	4.4	Runoff from impervious paved surfaces is directed towards vegetated areas for natural filtration and/or infiltration before conveyance offsite or into the storm drainage system. Credit for Self- Treating and/or Self-Retaining Areas may be applied per the requirements of Section 1.1.2B.	х		
	4.5	Driveways are the minimum required to accommodate public safety and emergency access. (Residential driveways providing access to parking areas serving three residences or less should be a maximum of 10 feet wide where practicable)			х
	4.6	Residential driveways serving three residences or less are shared wherever practicable.			х
	4.7	When alleys are not utilized, "two-track" driveways are utilized for driveways serving three residences or less wherever practicable.			х
	4.8	Tandem parking for single-family residential uses is incorporated wherever practicable.			Х


	Item #	Description	Verified	Technically Infeasible	Not Appilcable
	5.1	Preferably all new parking spaces, at least 50% of new parking spaces in excess of 10 parking spaces, and all parking spaces in excess of the amount required by this Ordinance shall be constructed of permeable materials with a minimum 8-inch crushed stone infiltration bed or as otherwise required by the Town Engineer. In areas of poorly draining soils the permeable design may still provide water quality treatment as a "flow-through" condition with an underdrain. All permeable pavement systems shall meet the requirements of Stormwater Article 1.2.B.7.			Х
Parking Design	5.2	Signs marking permeable pavement and clearly listing applicable maintenance requirements shall be installed immediately adjacent to areas containing 5 or more permeable parking spaces, and a permeable pavement maintenance program shall be included as part of the Stormwater Operation and Maintenance Plan.			Х
	5.3	Parking lot islands and landscape buffer locations should be coordinated with topography and configured as depressed bioretention and/or natural swale systems.			х
	5.4	Ten percent of parking spaces provided in excess of 10 spaces should be compact parking spaces.			х
	5.5	Sites shall include bicycle racks allowing for a bicycle frame to be secured with at least two points of contact, See Parking Standards Section 9.01 for specific requirements.			х
gn					
BMP Design	6.1	Stormwater BMPs are designed per the requirements of the Connecticut Stormwater Quality Manual, latest version, or using alternate design methods approved by the Town Engineer.	Х		
	6.2	Stormwater BMPs for projects in Simsbury Center are selected according to transect zone and soil			х

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
		Rain barrels, cisterns, and/or other rainwater	vermeu	Incasible	Applicable
ltinued)	6.4	harvesting techniques to reuse rainwater for irrigation and other non-potable uses are incorporated into the site design.			х
BMP Design (continued)	6.5	Qualifying trees, with appropriate soil volume, structural soils, and/or root barriers as required, are incorporated into the parking and landscape design as stormwater BMPs (see Tree Impervious Area Credit Section 1.2B).			Х
BN	6.6	An Erosion and Soil Sedimentation Control Plan conforming to the standards of Connecticut Guidelines for Soil Erosion and Sediment Control is included with the project design.	Х		
	6.7	Water quality and infiltration BMPs incorporate appropriate pretreatment per the Connecticut Stormwater Quality Manual, latest revision, or alternate designs approved by the Town Engineer			x
				-	
в	7.1	The site design accommodates maintenance access for all stormwater BMPs.	Х		
nanc	7.2	Stormwater Operation and Maintenance Plan is included.	х		
Maintenance	7.3	Responsible Party for implementation, maintenance, and correction of stormwater treatment practices is designated including contact information.	х		

	L
	к
	J
	н
	G
	F
	E
EV DESCRIPTION DATE ISSUED FOR PERMITTING 03-01-22	
URRENT ISSUE STATUS:	D
RUE NORTH:	
SMRT Architects and Engineers 200 Brickstone Square, Suite 303 Andover, Massachusetts 01810 1.877.700.7678 www.smrtinc.com	С
VESTMINSTER SCHOOL RACK & FIELD RENOVATION 95 HOPMEADOW STREET, SIMSBURY, CT 06070	
PRE-DEVELOPMENT NATERSHED MAP	В
0' 15' 30' 60' 90' CALE: 1"=30'-0"	
/E OF RECORD: MAF OB CAPTAIN:	A

COPYRIGHT 2022 SMRT INC.

E	Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	2-Year Storm	Type III 24-hr		Default	24.00	1	3.20	2
	2	10-Year Storm	Type III 24-hr		Default	24.00	1	4.70	2
	3	25-Year Storm	Type III 24-hr		Default	24.00	1	5.50	2
	4	100-Year Storm	Type III 24-hr		Default	24.00	1	6.90	2

Rainfall Events Listing (selected events)

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.133	39	>75% Grass cover, Good, HSG A (101A-1, 101A-2, 101C, 102A)
0.018	98	Roof (102A)
1.086	98	Track (101B-1, 101B-2, 102A)
0.183	30	Woods, Good, HSG A (101C)
4.419	53	TOTAL AREA

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
()	F	
3.316	HSG A	101A-1, 101A-2, 101C, 102A
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
1.103	Other	101B-1, 101B-2, 102A
4.419		TOTAL AREA

21263_PRE

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Printed 2/28/2022 Page 5

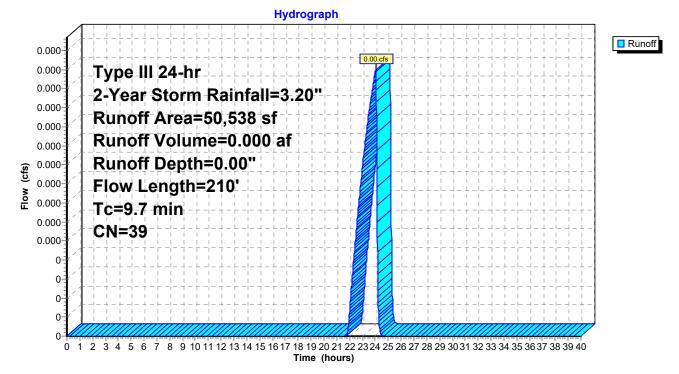
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
3.133	0.000	0.000	0.000	0.000	3.133	>75% Grass cover, Good	101A-1,
							101A-2,
							101C,
							102A
0.000	0.000	0.000	0.000	0.018	0.018	Roof	102A
0.000	0.000	0.000	0.000	1.086	1.086	Track	101B-1,
							101B-2,
							102A
0.183	0.000	0.000	0.000	0.000	0.183	Woods, Good	101C
3.316	0.000	0.000	0.000	1.103	4.419	TOTAL AREA	

21263_PRE Type III 24 Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment101A-1:	Runoff Area=50,538 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=210' Tc=9.7 min CN=39 Runoff=0.00 cfs 0.000 af
Subcatchment101A-2:	Runoff Area=41,487 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=376' Tc=10.7 min CN=39 Runoff=0.00 cfs 0.000 af
Subcatchment101B-1:	Runoff Area=17,224 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=1.27 cfs 0.098 af
Subcatchment101B-2:	Runoff Area=26,808 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=1.98 cfs 0.152 af
Subcatchment101C:	Runoff Area=23,772 sf 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=36 Runoff=0.00 cfs 0.000 af
Subcatchment102A:	Runoff Area=32,673 sf 12.30% Impervious Runoff Depth=0.06" Tc=5.0 min CN=46 Runoff=0.01 cfs 0.004 af
Pond I-1: North Ex. Infiltration Units Discarded=0.09	Peak Elev=279.29' Storage=1,540 cf Inflow=1.27 cfs 0.098 af cfs 0.091 af Primary=0.10 cfs 0.006 af Outflow=0.18 cfs 0.098 af
	Peak Elev=278.70' Storage=2,126 cf Inflow=1.98 cfs 0.152 af cfs 0.152 af Primary=0.00 cfs 0.000 af Outflow=0.22 cfs 0.152 af
Link DP-1:	Inflow=0.10 cfs 0.006 af Primary=0.10 cfs 0.006 af
Link DP-2:	Inflow=0.01 cfs 0.004 af Primary=0.01 cfs 0.004 af

Total Runoff Area = 4.419 ac Runoff Volume = 0.254 af Average Runoff Depth = 0.69" 75.04% Pervious = 3.316 ac 24.96% Impervious = 1.103 ac

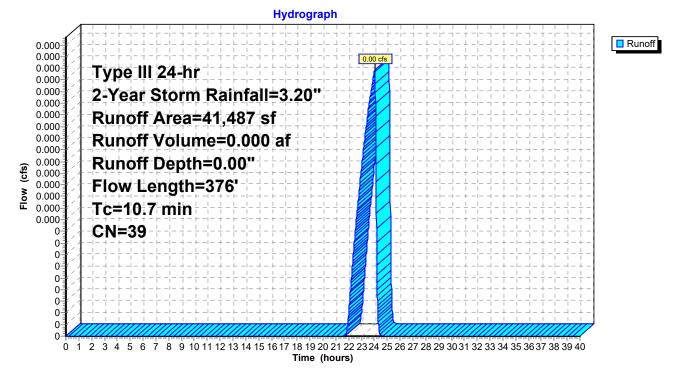

Summary for Subcatchment 101A-1:

Runoff = 0.00 cfs @ 24.02 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

 A	rea (sf)	CN E	Description				
50,538 39 >75% Grass cover, Good, HSG A							
	50,538	1	00.00% P	ervious Are	a		
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
8.6	60	0.0100	0.12		Sheet Flow,		
0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps		
0.7	108	0.0050	2.63	0.52			
					6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13' n= 0.010 PVC, smooth interior		
 9.7	210	Total					

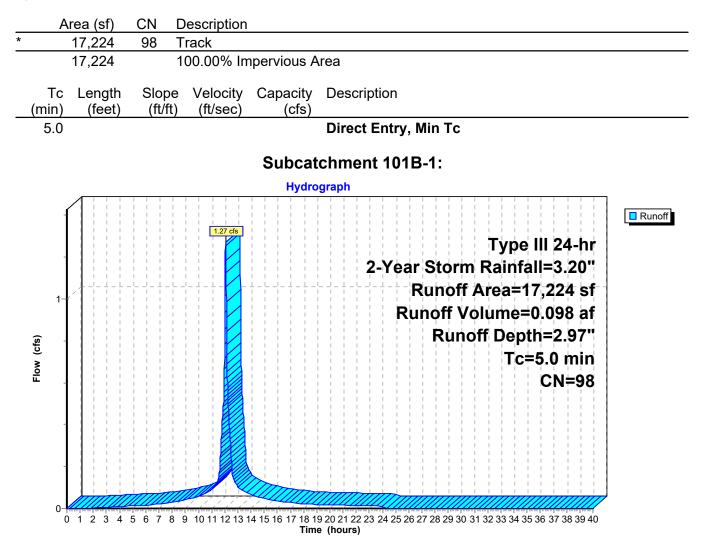
Subcatchment 101A-1:


Summary for Subcatchment 101A-2:

Runoff = 0.00 cfs @ 24.02 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.000 af, Depth= 0.00"

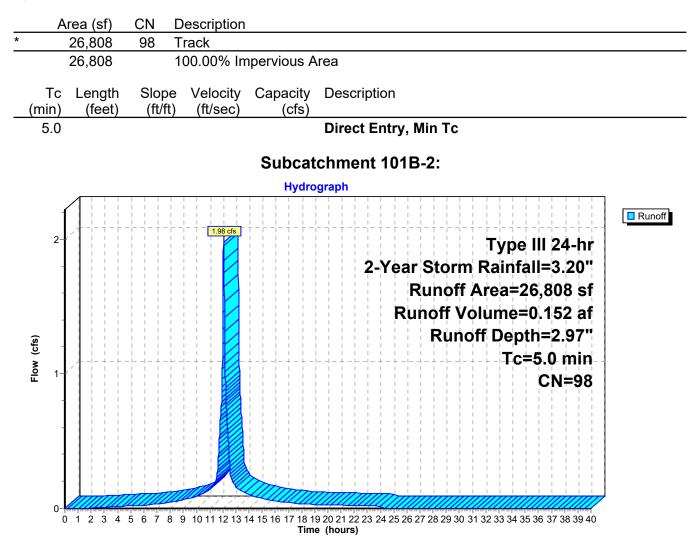
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

 A	rea (sf)	CN E	Description		
	41,487	39 >	•75% Gras	ood, HSG A	
	41,487	1	00.00% P	ervious Are	a
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.6	60	0.0100	0.12		Sheet Flow,
0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
1.7	274	0.0050	2.63	0.52	•
 					6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13' n= 0.010 PVC, smooth interior
 10.7	376	Total			


Subcatchment 101A-2:

Summary for Subcatchment 101B-1:

Runoff = 1.27 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.098 af, Depth= 2.97"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

Summary for Subcatchment 101B-2:

Runoff = 1.98 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.152 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

Summary for Subcatchment 101C:

0.000 af, Depth= 0.00"

Page 11

[45] Hint: Runoff=Zero

0.00 hrs, Volume= Runoff = 0.00 cfs @ Routed to Link DP-1:

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

Area (sf)	CN Description									
15,798										
7,974 30 Woods, Good, HSG A										
23,772	36 Weighted Average 100.00% Pervious Area									
23,772	100.00% Pervious Area									
Tc Length	Slope Velocity Capacity Description									
(min) (feet)	(ft/ft) (ft/sec) (cfs)									
5.0	Direct Entry, Min Tc									
	Subcatchment 101C:									
	Hydrograph									
		1								
	Type III 24-hr									
	2-Year Storm Rainfall=3.20"									
	Runoff Area=23,772 sf									
	Runoff Volume=0.000 af									
	Runoff Depth=0.00"									
(cts	Tc=5.0 min									
Flow (cfs)										
ш.	CN=36									
0.00 cfs										

0-44 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

21263_PRE	Type III 24-hr	2-Year Storm Rainfall=3.20"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s	/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 12

Summary for Subcatchment 102A:

Runoff = 0.01 cfs @ 15.05 hrs, Volume= Routed to Link DP-2 :

0-

0.004 af, Depth= 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

	A	rea (sf)		Description					
*		763		Roof					
×		3,255		Frack	0				
		28,655				ood, HSG A			
		32,673		Veighted A					
		28,655 4,018			rvious Area				
		4,010		12.30% 111	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.0			· · ·	· · · ·	Direct Entry,	Min Tc		
						•			
					Subca	atchment 10	2A:		
					Hydro	graph			
	0.00	6-4 - 1- + -	$\begin{array}{c} \vdash - \mid - + - \vdash - \\ \mid \mid \mid \mid \mid \mid \mid \mid \mid \mid$			-+++++++++++		+ - - + - - + -	Runoff
	0.00	- + - i- + -			= -1- + -		Tvr	be III 24-hr	
		+ −!− + −				-+-!-+ - + - !- V -+-	r Storm Rain		
	0.00	5-1							
	0.004	4				<mark>,</mark>	Runoff Area		
	0.004						unoff Volume	e=0.004 af	
		그 가 -!!-					Runoff De	oth=0.06"	
	Elow (cfs) (cfs)	3-1						c=5.0 min	
	<u>8</u> 0.00	3					· · · · · · · · · · ·		
	ш 0.002	2-4						CN=46 -	
		<i>_</i> − <u> </u>	$\frac{1}{1} \frac{1}{1} \frac{1}$					$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	
	0.00	2-3° 1 - - - -		· · · · · · · ·			· · · · · · · · · · · · ·	· · · · · · · · · ·	
	0.00	14							
	0.00	1∄∕1]:]:							
	0.00	╡┊┼╶╎╴╎╴							
	0.00		i i i i	i i i i i i		iiiii 🚺			

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Pond I-1: North Ex. Infiltration Units

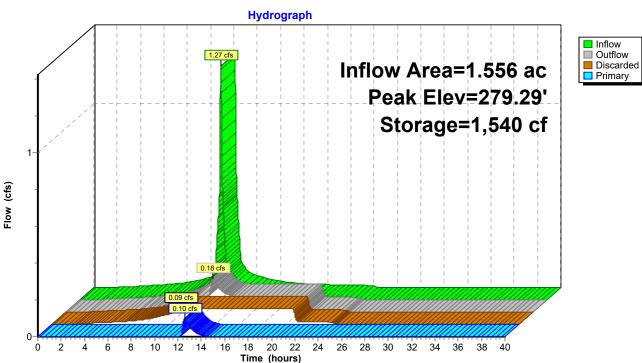
Inflow Area = 1.556 ac, 25.42% Impervious, Inflow Depth = 0.75" for 2-Year Storm event Inflow 1.27 cfs @ 12.07 hrs, Volume= 0.098 af = 0.18 cfs @ 12.55 hrs, Volume= Outflow = 0.098 af, Atten= 86%, Lag= 29.0 min Discarded = 0.09 cfs @ 11.05 hrs, Volume= 0.091 af 0.10 cfs @ 12.55 hrs, Volume= Primary = 0.006 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.29' @ 12.55 hrs Surf.Area= 1,838 sf Storage= 1,540 cf Flood Elev= 282.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 117.5 min calculated for 0.098 af (100% of inflow) Center-of-Mass det. time= 117.5 min (873.2 - 755.7)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			75 Chambers in 3 Rows
#2	278.25'	88 cf	ADS_StormTech SC-310 +Cap x 6 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			6 Chambers in 2 Rows
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25
			3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids
#4	278.00'	19 cf	4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3
			146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids
		2,061 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	279.08' 6.0'	' Round 6" PVC
	2	L= '	113.0' CPP, projecting, no headwall, Ke= 0.900
		Inle	t / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900

			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Maniford X 4.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area


#3 Discarded 278.00' 2.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 11.05 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.10 cfs @ 12.55 hrs HW=279.29' (Free Discharge) **1=6" PVC** (Inlet Controls 0.10 cfs @ 1.23 fps)

1–2=6" Maniford (Passes 0.10 cfs of 0.49 cfs potential flow)

HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Pond I-1: North Ex. Infiltration Units

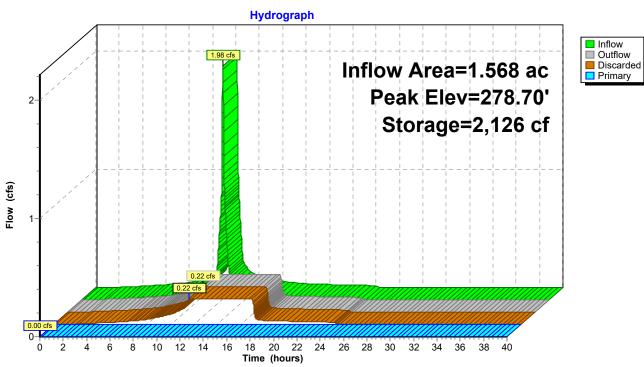
Summary for Pond I-2: South Ex. Infiltration Units

Inflow Area = 1.568 ac, 39.25% Impervious, Inflow Depth = 1.17" for 2-Year Storm event Inflow 1.98 cfs @ 12.07 hrs, Volume= 0.152 af = 0.22 cfs @ 11.59 hrs, Volume= Outflow 0.152 af, Atten= 89%, Lag= 0.0 min = Discarded = 0.22 cfs @ 11.59 hrs, Volume= 0.152 af 0.00 cfs @ 0.00 hrs, Volume= Primary = 0.000 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 278.70' @ 12.67 hrs Surf.Area= 4,722 sf Storage= 2,126 cf Flood Elev= 282.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 64.1 min calculated for 0.152 af (100% of inflow) Center-of-Mass det. time= 64.1 min (819.6 - 755.6)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			162 Chambers in 6 Rows
#2	278.25'	767 cf	ADS_StormTech SC-310 +Cap x 52 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			52 Chambers in 4 Rows
#3	278.00'	1,634 cf	20.67'W x 170.75'L x 2.08'H Prismatoid for 6 rows of 27
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids
		5,355 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	279.08' 6.0 "	' Round 6" PVC
	-	= 7	75.0' CPP projecting no headwall Ke= 0.900

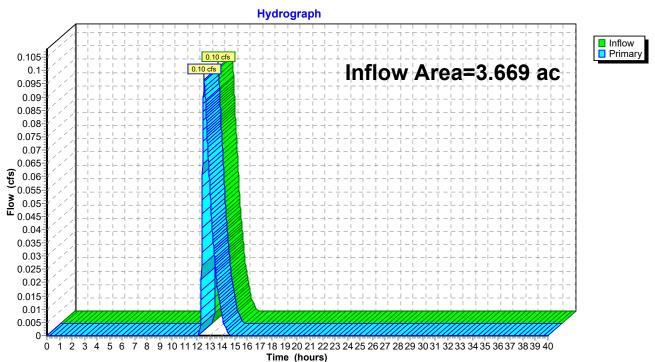

	i innony	210.00	
			L= 75.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Manifold X 8.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.22 cfs @ 11.59 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=278.00' (Free Discharge) 1=6" PVC (Controls 0.00 cfs)

1–2=6" Manifold (Controls 0.00 cfs)

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

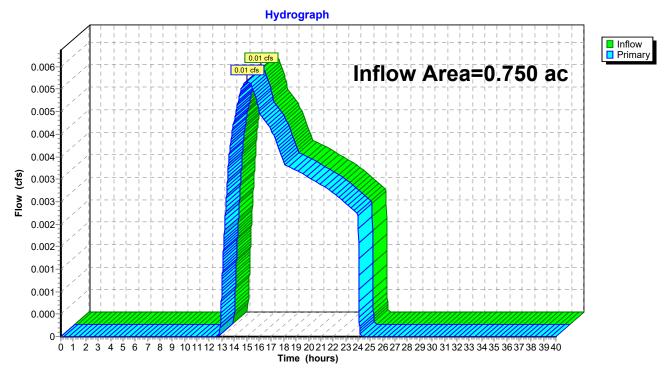


Pond I-2: South Ex. Infiltration Units

Summary for Link DP-1:

Inflow Area =	3.669 ac, 27.55% Impervious, Ir	nflow Depth = 0.02" for 2-Year Storm event
Inflow =	0.10 cfs @ 12.55 hrs, Volume=	0.006 af
Primary =	0.10 cfs @ 12.55 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs


Link DP-1:

21263_PRE	Type III 24-hr 2-Year St	orm Rainfall=3.20"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/n 007	29 © 2021 HydroCAD Software Solutions LLC	Page 18

Summary for Link DP-2:

Inflow Area	=	0.750 ac, 12.30% Impervious, Inflow Depth = 0.06" for 2-Year Storm event
Inflow	=	0.01 cfs @ 15.05 hrs, Volume= 0.004 af
Primary	=	0.01 cfs @ 15.05 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

 21263_PRE
 Type III 24-hr
 10-Year Storm Rainfall=4.70"

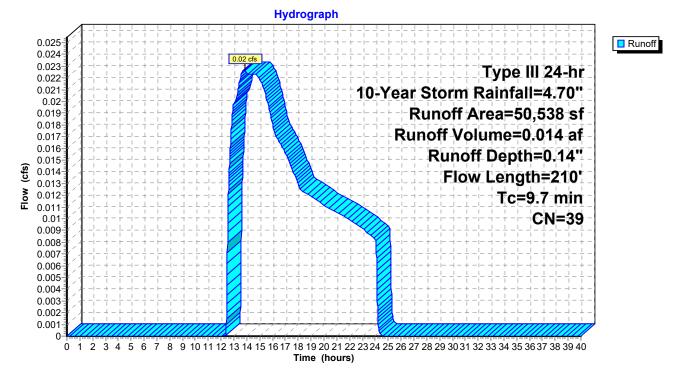
 Prepared by SMRT
 Printed
 2/28/2022

 HydroCAD® 10.10-7a
 s/n 00729
 © 2021 HydroCAD Software Solutions LLC
 Page 19

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment101A-1:	Runoff Area=50,538 sf 0.00% Impervious Runoff Depth=0.14" Flow Length=210' Tc=9.7 min CN=39 Runoff=0.02 cfs 0.014 af
Subcatchment101A-2:	Runoff Area=41,487 sf 0.00% Impervious Runoff Depth=0.14" Flow Length=376' Tc=10.7 min CN=39 Runoff=0.02 cfs 0.011 af
Subcatchment101B-1:	Runoff Area=17,224 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=1.88 cfs 0.147 af
Subcatchment101B-2:	Runoff Area=26,808 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=2.93 cfs 0.229 af
Subcatchment101C:	Runoff Area=23,772 sf 0.00% Impervious Runoff Depth=0.07" Tc=5.0 min CN=36 Runoff=0.00 cfs 0.003 af
Subcatchment102A:	Runoff Area=32,673 sf 12.30% Impervious Runoff Depth=0.39" Tc=5.0 min CN=46 Runoff=0.13 cfs 0.025 af
Pond I-1: North Ex. Infiltration Units Discarded=0.09	Peak Elev=279.91' Storage=1,958 cf Inflow=1.88 cfs 0.161 af cfs 0.121 af Primary=0.57 cfs 0.040 af Outflow=0.65 cfs 0.161 af
	Peak Elev=279.17' Storage=3,697 cf Inflow=2.93 cfs 0.240 af cfs 0.238 af Primary=0.02 cfs 0.002 af Outflow=0.24 cfs 0.240 af
Link DP-1:	Inflow=0.57 cfs 0.046 af Primary=0.57 cfs 0.046 af
Link DP-2:	Inflow=0.13 cfs 0.025 af Primary=0.13 cfs 0.025 af

Total Runoff Area = 4.419 ac Runoff Volume = 0.429 af Average Runoff Depth = 1.16" 75.04% Pervious = 3.316 ac 24.96% Impervious = 1.103 ac

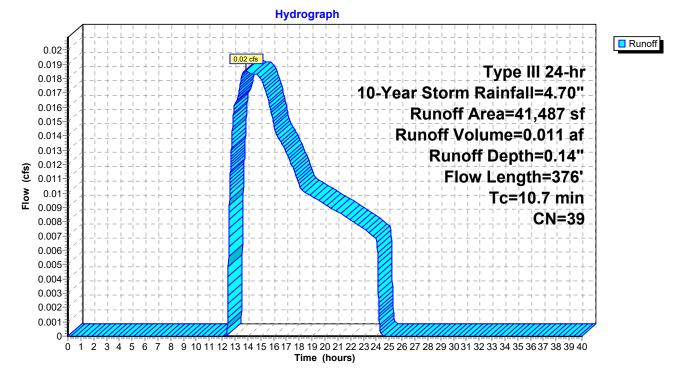

Summary for Subcatchment 101A-1:

Runoff = 0.02 cfs @ 13.83 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.014 af, Depth= 0.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

_	A	rea (sf)	CN	Description		
	50,538 39 >75% Grass cover, Good, HSG A					
		50,538		100.00% P	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
_	8.6	60	0.0100	0.12		Sheet Flow,
	0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	0.7	108	0.0050	2.63	0.52	
	97	210	Total			

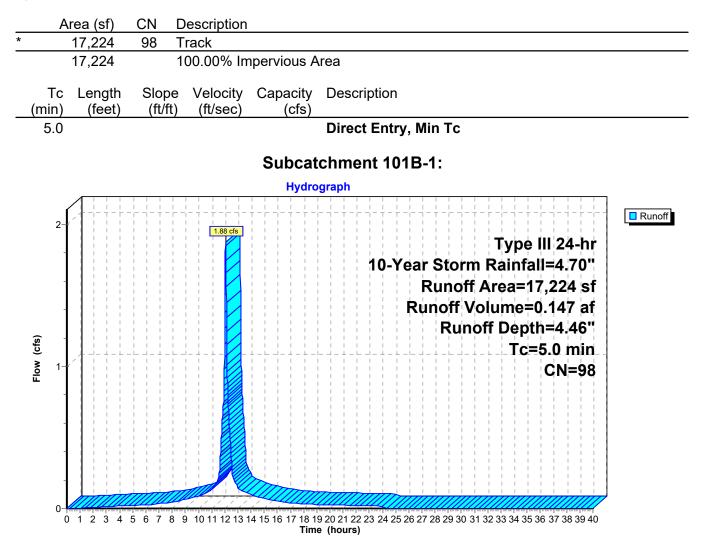
Subcatchment 101A-1:


Summary for Subcatchment 101A-2:

Runoff = 0.02 cfs @ 13.85 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.011 af, Depth= 0.14"

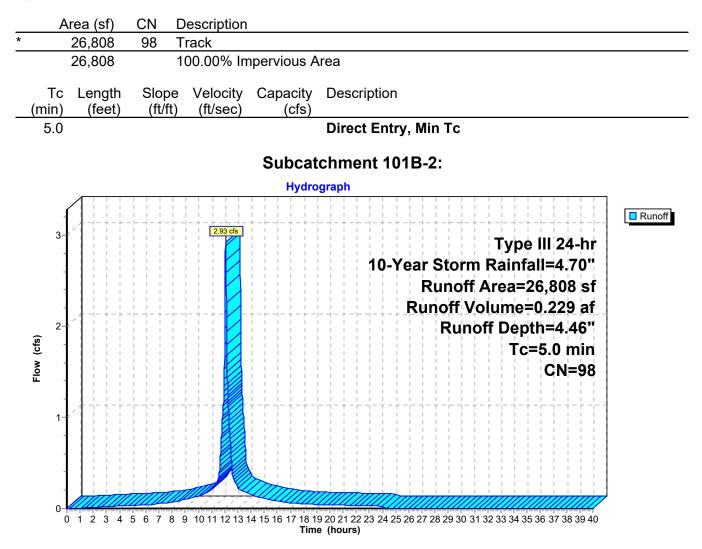
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

_	A	rea (sf)	CN E	Description		
	41,487 39 >75% Grass cover, Good, HSG A					
		41,487	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.6	60	0.0100	0.12		Sheet Flow,
	0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.7	274	0.0050	2.63	0.52	Pipe Channel, 6" pipe/trench drain
						6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13' n= 0.010 PVC, smooth interior
	10.7	376	Total			


Subcatchment 101A-2:

Summary for Subcatchment 101B-1:

Runoff = 1.88 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.147 af, Depth= 4.46"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

Summary for Subcatchment 101B-2:

Runoff = 2.93 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.229 af, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

21263 PRE	Type III 24-hr	10-Year Storm Rainfall=4.70"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/	n 00729 © 2021 HydroCAD Software Solutions LLC	Page 24

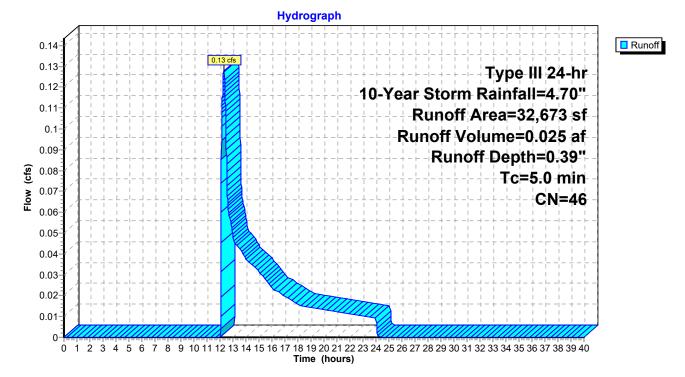
Summary for Subcatchment 101C:

Runoff = 0.00 cfs @ 15.25 hrs, Volume= 0.003 af, Depth= 0.07" Routed to Link DP-1 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

	15,798 7,974			s cover, Go od, HSG A	Good, HSG A A
	23,772 23,772	36 V	Veighted A		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
5.0					Direct Entry, Min Tc
				Subca	atchment 101C:
				Hydro	rograph
0.005 0.005					Type III 24-hr 10-Year Storm Rainfall=4.70"
0.004 0.004					Runoff Area=23,772 sf Runoff Volume=0.003 af Runoff Depth=0.07"
(23) 0.003					Tc=5.0 min
Close Construction Close 				$-\frac{1}{1} - \frac{1}{1} - 1$	CN=36
0.002					
0.002					
0.001			$-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$		
0.001					

21263_PRE	Type III 24-hr	10-Year Storm Rainfall=4.70"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 25


Summary for Subcatchment 102A:

Runoff = 0.13 cfs @ 12.30 hrs, Volume= Routed to Link DP-2 : 0.025 af, Depth= 0.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

	Area	a (sf)	CN	Description			
*		763	98	Roof			
*	3	,255	98	Track			
	28	,655	39	>75% Gras	s cover, Go	ood, HSG A	
	32	,673	46	Weighted A	verage		
	28	,655		37.70% Pe	rvious Area		
	4	,018		12.30% Imp	pervious Ar	ea	
	Tc L	ength	Slope	,	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.0					Direct Entry, Min Tc	

Subcatchment 102A:

Summary for Pond I-1: North Ex. Infiltration Units

Inflow Area = 1.556 ac, 25.42% Impervious, Inflow Depth = 1.24" for 10-Year Storm event Inflow 1.88 cfs @ 12.07 hrs, Volume= 0.161 af = 0.65 cfs @ 12.32 hrs, Volume= Outflow = 0.161 af, Atten= 65%, Lag= 14.8 min Discarded = 0.09 cfs @ 10.02 hrs, Volume= 0.121 af Primary = 0.57 cfs @ 12.32 hrs, Volume= 0.040 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.91' @ 12.32 hrs Surf.Area= 1,838 sf Storage= 1,958 cf Flood Elev= 282.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 109.8 min calculated for 0.161 af (100% of inflow) Center-of-Mass det. time= 109.8 min (882.9 - 773.1)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
#2	278.25'	88 cf	75 Chambers in 3 Rows ADS_StormTech SC-310 +Cap x 6 Inside #4 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 6 Chambers in 2 Rows
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25
#4	278.00'	19 cf	3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids 4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3 146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids
		2,061 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	L= Inle	" Round 6" PVC 113.0' CPP, projecting, no headwall, Ke= 0.900 t/ Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900 0.010 PVC, smooth interior, Flow Area= 0.20 sf

279.08' 6.0" Vert. 6" Maniford X 4.00 C= 0.600

Limited to weir flow at low heads#3 Discarded278.00'2.000 in/hr Exfiltration over Surface area

#2

Device 1

Discarded OutFlow Max=0.09 cfs @ 10.02 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.57 cfs @ 12.32 hrs HW=279.91' (Free Discharge) 1=6" PVC (Inlet Controls 0.57 cfs @ 2.89 fps) 2=6" Maniford (Passes 0.57 cfs of 2.88 cfs potential flow)

Hydrograph InflowOutflow 1.88 cfs Inflow Area=1.556 ac Discarded Primary 2 Peak Elev=279.91' Storage=1,958 cf Flow (cfs) 0.65 cfs 0.57 cfs 0.09 cf 0-2 14 20 22 Ò 4 6 8 10 12 16 18 24 26 28 30 32 34 36 38 40

Time (hours)

Pond I-1: North Ex. Infiltration Units

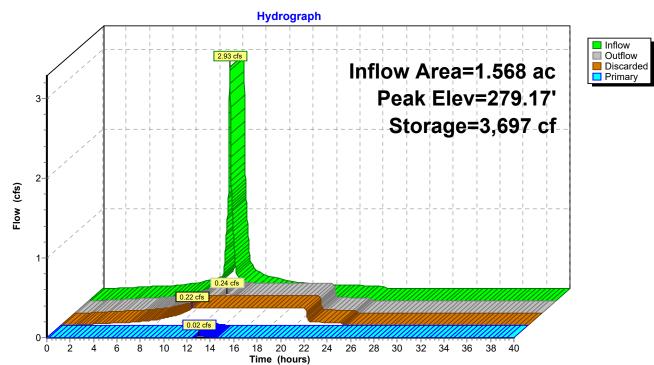
Summary for Pond I-2: South Ex. Infiltration Units

Inflow Area = 1.568 ac, 39.25% Impervious, Inflow Depth = 1.84" for 10-Year Storm event Inflow 2.93 cfs @ 12.07 hrs, Volume= 0.240 af = 0.24 cfs @ 13.04 hrs, Volume= Outflow = 0.240 af, Atten= 92%, Lag= 58.2 min Discarded = 0.22 cfs @ 11.19 hrs, Volume= 0.238 af 0.02 cfs @ 13.04 hrs, Volume= Primary = 0.002 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.17' @ 13.04 hrs Surf.Area= 4,722 sf Storage= 3,697 cf Flood Elev= 282.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 125.0 min calculated for 0.240 af (100% of inflow) Center-of-Mass det. time= 125.0 min (886.9 - 761.9)

Volume	Invert	Avail.Storage	Storage Description		
#1	278.25'	2,388 c	f ADS_StormTech SC-310 +Cap x 162 Inside #3		
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf		
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap		
			162 Chambers in 6 Rows		
#2	278.25'	767 c			
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf		
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap		
			52 Chambers in 4 Rows		
#3	278.00'	1,634 c			
	070.001	500	7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids		
#4	278.00'	566 c			
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids		
		5,355 c	f Total Available Storage		
Device	Routing	Invert Ou	utlet Devices		
#1	Primary	279.08' 6.	0" Round 6" PVC		
		L=	: 75.0' CPP, projecting, no headwall, Ke= 0.900		
		Inl	Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900		
		n=	0.010 PVC, smooth interior, Flow Area= 0.20 sf		
#2	Device 1	279.08' 6.	0" Vert. 6" Manifold X 8.00 C= 0.600		

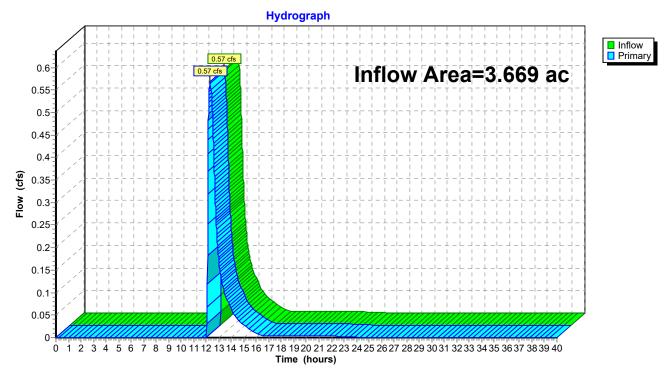

Limited to weir flow at low heads

#3 Discarded 278.00' **2.000 in/hr Exfiltration over Surface area Discarded OutFlow** Max=0.22 cfs @ 11.19 hrs HW=278.05' (Free Discharge)

3=Exfiltration (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.02 cfs @ 13.04 hrs HW=279.17' (Free Discharge) -1=6" PVC (Inlet Controls 0.02 cfs @ 0.81 fps)

1–2=6" Manifold (Passes 0.02 cfs of 0.20 cfs potential flow)

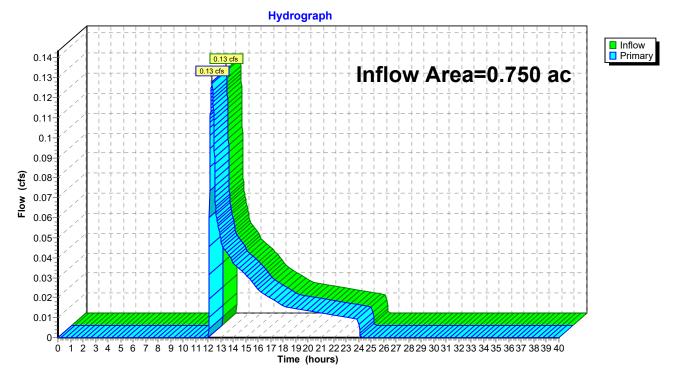


Pond I-2: South Ex. Infiltration Units

Summary for Link DP-1:

Inflow Area =	3.669 ac, 27.55% Impervious, Inf	flow Depth = 0.15" for 10-Year Storm event
Inflow =	0.57 cfs @ 12.32 hrs, Volume=	0.046 af
Primary =	0.57 cfs @ 12.32 hrs, Volume=	0.046 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs


Link DP-1:

21263_PRE	Type III 24-hr	10-Year Storm Rainfall=4.70"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/r	00729 © 2021 HydroCAD Software Solutions LLC	Page 31

Summary for Link DP-2:

Inflow Area	=	0.750 ac, 12.30% Impervious, Inflow Depth = 0.39" for 10-Year Storm event
Inflow	=	0.13 cfs @ 12.30 hrs, Volume= 0.025 af
Primary	=	0.13 cfs @ 12.30 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

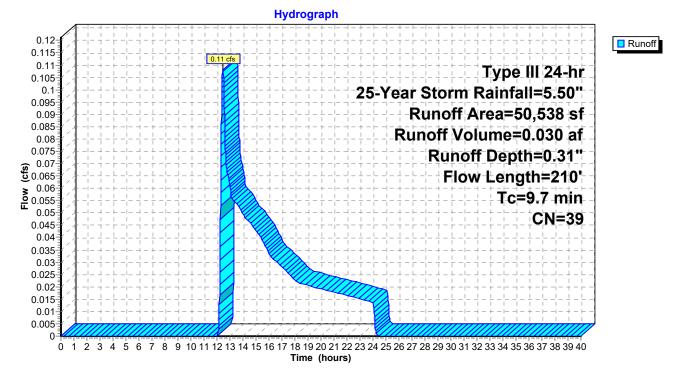
Link DP-2:

21263_PRE	Type III 24-hr 25-Year Storm Rainfall=5.50"
Prepared by SMRT	Printed 2/28/2022
HydroCAD® 10.10-7a s/n 00729 © 2021 Hydro	CAD Software Solutions LLC Page 32

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment101A-1:	Runoff Area=50,538 sf 0.00% Impervious Runoff Depth=0.31" Flow Length=210' Tc=9.7 min CN=39 Runoff=0.11 cfs 0.030 af
Subcatchment101A-2:	Runoff Area=41,487 sf 0.00% Impervious Runoff Depth=0.31" Flow Length=376' Tc=10.7 min CN=39 Runoff=0.09 cfs 0.025 af
Subcatchment101B-1:	Runoff Area=17,224 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=2.21 cfs 0.173 af
Subcatchment101B-2:	Runoff Area=26,808 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=3.43 cfs 0.270 af
Subcatchment101C:	Runoff Area=23,772 sf 0.00% Impervious Runoff Depth=0.19" Tc=5.0 min CN=36 Runoff=0.01 cfs 0.009 af
Subcatchment102A:	Runoff Area=32,673 sf 12.30% Impervious Runoff Depth=0.67" Tc=5.0 min CN=46 Runoff=0.33 cfs 0.042 af
Pond I-1: North Ex. Infiltration Units Discarded=0.09	Peak Elev=285.20' Storage=2,061 cf Inflow=2.21 cfs 0.204 af cfs 0.134 af Primary=1.83 cfs 0.070 af Outflow=1.92 cfs 0.204 af
	Peak Elev=279.44' Storage=4,340 cf Inflow=3.43 cfs 0.295 af cfs 0.268 af Primary=0.25 cfs 0.027 af Outflow=0.47 cfs 0.295 af
Link DP-1:	Inflow=1.83 cfs 0.105 af Primary=1.83 cfs 0.105 af
Link DP-2:	Inflow=0.33 cfs 0.042 af Primary=0.33 cfs 0.042 af

Total Runoff Area = 4.419 acRunoff Volume = 0.549 afAverage Runoff Depth = 1.49"75.04% Pervious = 3.316 ac24.96% Impervious = 1.103 ac

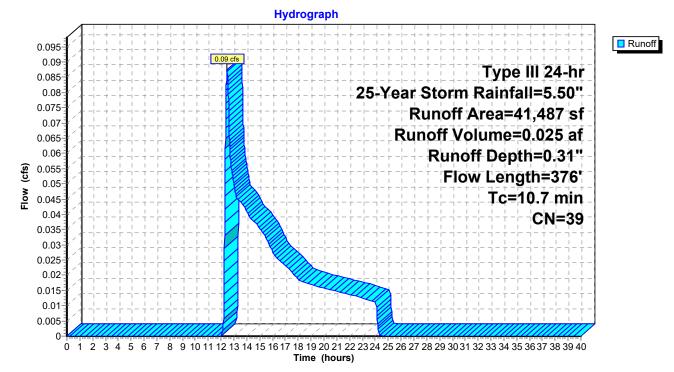

Summary for Subcatchment 101A-1:

Runoff = 0.11 cfs @ 12.45 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.030 af, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	A	rea (sf)	CN	Description		
50,538 39 >75% Grass cover, Good, HSG A						bod, HSG A
50,538			}	100.00% Pervious Area		
	Tc (min)	Length (feet)		,	Capacity (cfs)	Description
_	8.6	60	0 0.0100	0.12		Sheet Flow,
	0.4	42	2 0.0100) 1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	0.7	108	8 0.0050) 2.63	0.52	
	97	210	0 Total			

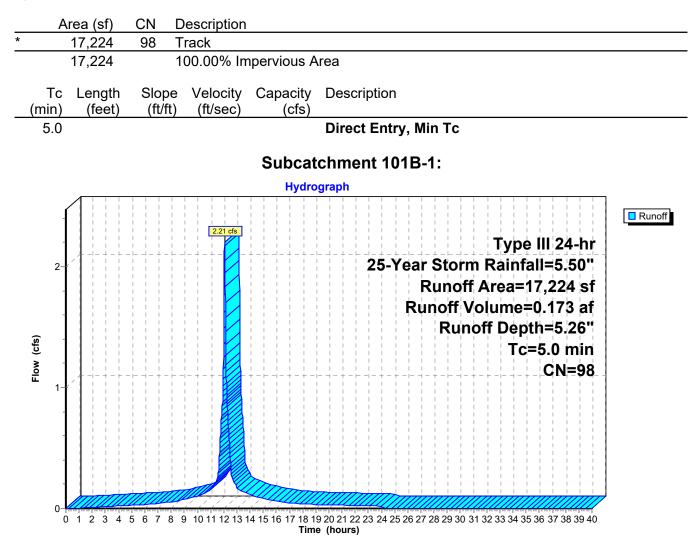
Subcatchment 101A-1:


Summary for Subcatchment 101A-2:

Runoff = 0.09 cfs @ 12.47 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.025 af, Depth= 0.31"

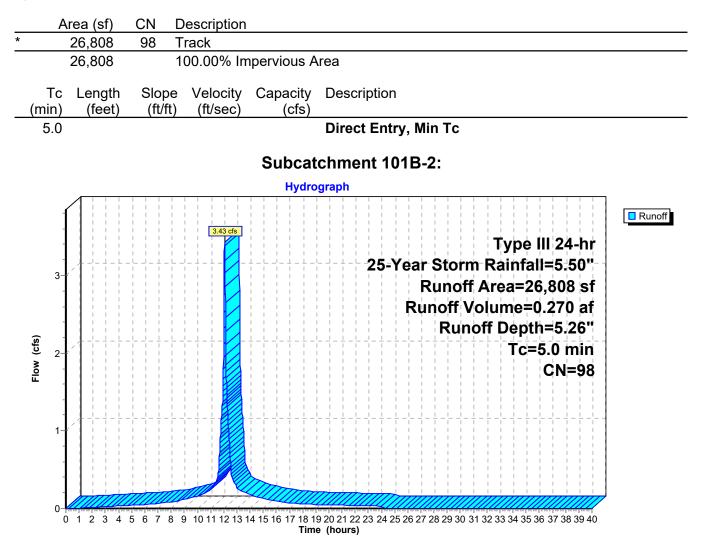
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

_	A	rea (sf)	CN E	Description		
		41,487	39 >	75% Gras	s cover, Go	bod, HSG A
		41,487	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.6	60	0.0100	0.12		Sheet Flow,
	0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	1.7	274	0.0050	2.63	0.52	Pipe Channel, 6" pipe/trench drain
						6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13' n= 0.010 PVC, smooth interior
	10.7	376	Total			


Subcatchment 101A-2:

Summary for Subcatchment 101B-1:

Runoff = 2.21 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.173 af, Depth= 5.26"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

Summary for Subcatchment 101B-2:

Runoff = 3.43 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.270 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

21263_PRE	Type III 24-hr	25-Year Storm Rainfall=5.50"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 37

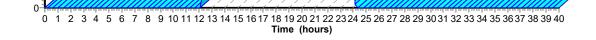
Summary for Subcatchment 101C:

Runoff 0.01 cfs @ 13.63 hrs, Volume= = Routed to Link DP-1 :

0.01

0.007 0.006 0.005 0.004 0.003 0.002 0.001

0.009 af, Depth= 0.19"


Runoff Depth=0.19"

Tc=5.0 min

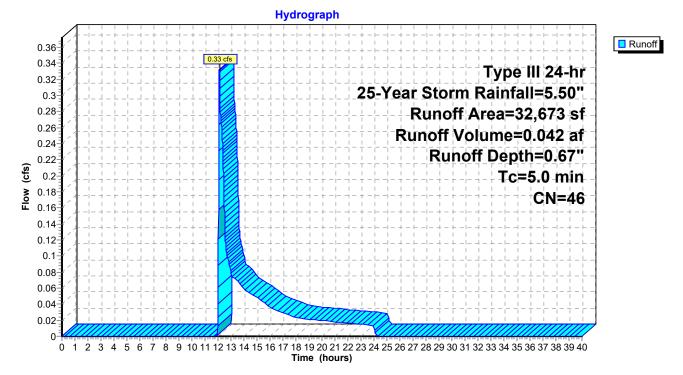
CN=36

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

Area (sf)	CN Desc	cription		
15,798	39 >759	% Grass	cover, Go	ood, HSG A
7,974	30 Woo	ods, Goo	d, HSG A	
23,772		ghted Av		
23,772	100.	00% Pei	rvious Are	а
Tc Length (min) (feet)		elocity ft/sec)	Capacity (cfs)	Description
5.0				Direct Entry, Min Tc
			Subca	tchment 101C:
			Subca _{Hydro}	
	1 1 1 1 1 1 + -1- + -1- + -1- + -	- + -1 - + - + -		graph
0.016			Hydro	
0.015		- + + - + - + - - + + - + - +	Hydro	graph
0.015			Hydro	graph
0.015			Hydro	graph Brandf Bra
0.015			Hydro	graph

21263_PRE	Type III 24-hr	25-Year Storm Rainfall=5.50"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 38

Summary for Subcatchment 102A:


0.042 af, Depth= 0.67"

Runoff = 0.33 cfs @ 12.12 hrs, Volume= Routed to Link DP-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	Area (sf)	CN	Description					
*	763	98	Roof	Roof				
*	3,255	98	Track	Track				
	28,655	39	>75% Gras	>75% Grass cover, Good, HSG A				
	32,673 28,655 4,018	46	Weighted A 87.70% Per 12.30% Imp	rvious Area				
	Tc Length (min) (feet)		,	Capacity (cfs)	Description			
	5.0				Direct Entry, Min Tc			

Subcatchment 102A:

Summary for Pond I-1: North Ex. Infiltration Units

[93] Warning: Storage range exceeded by 5.12'

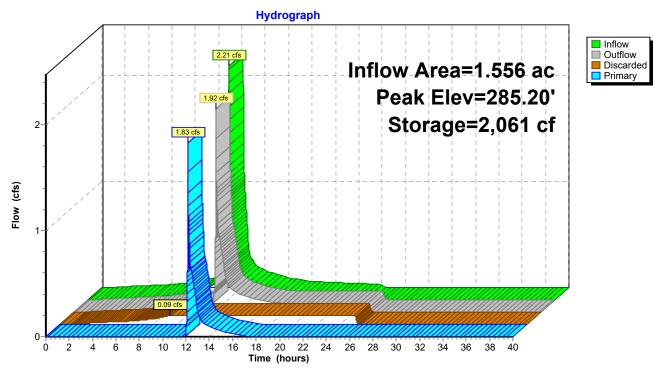
[58] Hint: Peaked 2.70' above defined flood level

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=10)

Inflow Area =	1.556 ac, 25.42% Impervious, Inflow	Depth = 1.57" for 25-Year Storm event
Inflow =	2.21 cfs @ 12.07 hrs, Volume=	0.204 af
Outflow =	1.92 cfs @ 12.13 hrs, Volume=	0.204 af, Atten= 13%, Lag= 3.7 min
Discarded =	0.09 cfs @ 9.43 hrs, Volume=	0.134 af
Primary =	1.83 cfs @ 12.13 hrs, Volume=	0.070 af
Routed to Link	DP-1 :	

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 285.20' @ 12.13 hrs Surf.Area= 1,838 sf Storage= 2,061 cf Flood Elev= 282.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 105.6 min calculated for 0.204 af (100% of inflow) Center-of-Mass det. time= 105.6 min (886.6 - 781.0)


Volume	Invert	Avail.Storage	Storage Description		
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 75 Chambers in 3 Rows		
#2	278.25'	88 cf			
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25 3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids		
#4	278.00'	19 cf	4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3 146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids		
		2,061 cf	Total Available Storage		
Device	Routing	Invert Out	let Devices		

DCVICC	Routing	mvon	Ouliet Devices
#1	Primary	279.08'	6.0" Round 6" PVC
			L= 113.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Maniford X 4.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 9.43 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=1.71 cfs @ 12.13 hrs HW=284.55' (Free Discharge) **1=6" PVC** (Inlet Controls 1.71 cfs @ 8.68 fps)

2=6" Maniford (Passes 1.71 cfs of 8.64 cfs potential flow)

Pond I-1: North Ex. Infiltration Units

Summary for Pond I-2: South Ex. Infiltration Units

Inflow Area = 1.568 ac, 39.25% Impervious, Inflow Depth = 2.26" for 25-Year Storm event Inflow 3.43 cfs @ 12.07 hrs, Volume= 0.295 af = 0.47 cfs @ 12.63 hrs, Volume= Outflow = 0.295 af, Atten= 86%, Lag= 33.4 min Discarded = 0.22 cfs @ 10.86 hrs, Volume= 0.268 af Primary = 0.25 cfs @ 12.63 hrs, Volume= 0.027 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.44' @ 12.63 hrs Surf.Area= 4,722 sf Storage= 4,340 cf Flood Elev= 282.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 128.6 min calculated for 0.295 af (100% of inflow) Center-of-Mass det. time= 128.6 min (894.3 - 765.7)

Volume	Invert	Avail.Storage	Storage Description		
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf		
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap		
			162 Chambers in 6 Rows		
#2	278.25'	767 cf			
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf		
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 52 Chambers in 4 Rows		
#3	278.00'	1.634 cf			
<i>#</i> 0	210.00	1,004 01	7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids		
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13		
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids		
		5,355 cf	Total Available Storage		
Device	Routing	Invert Out	let Devices		
#1	Primary		' Round 6" PVC		
			75.0' CPP, projecting, no headwall, Ke= 0.900		
			t / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900		
		n= (0.010 PVC, smooth interior, Flow Area= 0.20 sf		

279.08' 6.0" Vert. 6" Manifold X 8.00 C= 0.600

Limited to weir flow at low heads #3 Discarded 278.00' **2.000 in/hr Exfiltration over Surface area**

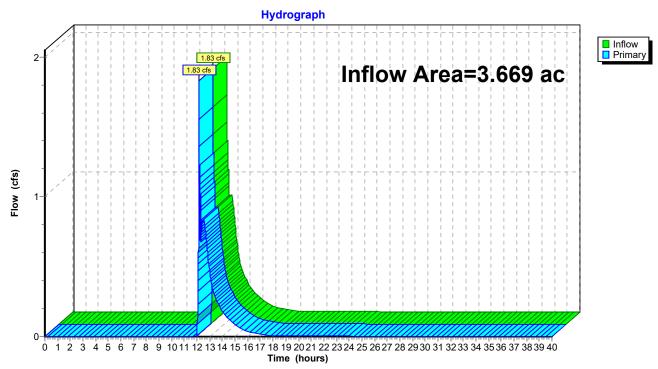
Discarded OutFlow Max=0.22 cfs @ 10.86 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.25 cfs @ 12.63 hrs HW=279.44' (Free Discharge) -1=6" PVC (Inlet Controls 0.25 cfs @ 1.62 fps)

1–2=6" Manifold (Passes 0.25 cfs of 2.50 cfs potential flow)

#2

Device 1

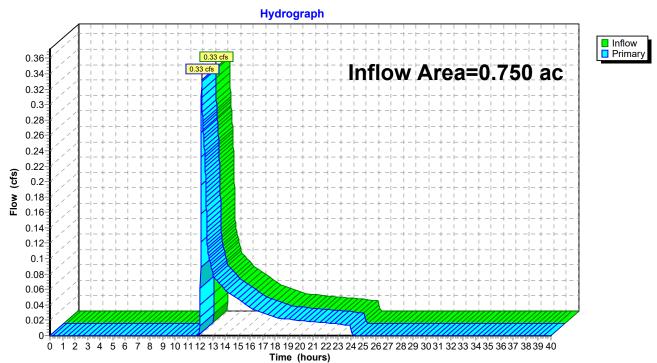

Pond I-2: South Ex. Infiltration Units Hydrograph InflowOutflow 3.43 cfs Inflow Area=1.568 ac Discarded Primary

Peak Elev=279.44' Storage=4,340 cf 3-Flow (cfs) 2 0.47 cfs 1 0.22 cfs 0-2 14 Ò 4 6 8 10 12 16 18 20 22 24 26 28 30 32 34 36 38 40 Time (hours)

Summary for Link DP-1:

Inflow Area	=	3.669 ac, 27.55% Impervious, Inflow Depth = 0.34" for 25-Year Storm event
Inflow	=	1.83 cfs @ 12.13 hrs, Volume= 0.105 af
Primary	=	1.83 cfs @ 12.13 hrs, Volume= 0.105 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs


Link DP-1:

21263_PRE	Type III 24-hr	25-Year Storm Rainfall=5.50"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/n 007	29 © 2021 HydroCAD Software Solutions LLC	Page 44

Summary for Link DP-2:

Inflow Area	a =	0.750 ac, 12.30% Impervious, Inflow Depth = 0.67" for 25-Year Storm event
Inflow	=	0.33 cfs @ 12.12 hrs, Volume= 0.042 af
Primary	=	0.33 cfs @ 12.12 hrs, Volume= 0.042 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

 21263_PRE
 Type III 24-hr
 100-Year Storm Rainfall=6.90"

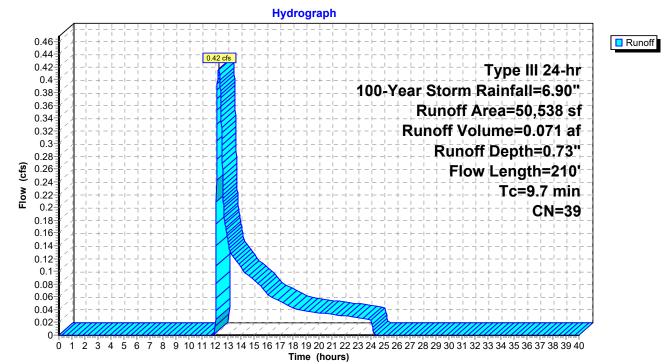
 Prepared by SMRT
 Printed 2/28/2022

 HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC
 Page 45

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment101A-1:	Runoff Area=50,538 sf 0.00% Impervious Runoff Depth=0.73" Flow Length=210' Tc=9.7 min CN=39 Runoff=0.42 cfs 0.071 af
Subcatchment101A-2:	Runoff Area=41,487 sf 0.00% Impervious Runoff Depth=0.73" Flow Length=376' Tc=10.7 min CN=39 Runoff=0.34 cfs 0.058 af
Subcatchment101B-1:	Runoff Area=17,224 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=2.77 cfs 0.219 af
Subcatchment101B-2:	Runoff Area=26,808 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=4.32 cfs 0.342 af
Subcatchment101C:	Runoff Area=23,772 sf 0.00% Impervious Runoff Depth=0.53" Tc=5.0 min CN=36 Runoff=0.12 cfs 0.024 af
Subcatchment102A:	Runoff Area=32,673 sf 12.30% Impervious Runoff Depth=1.27" Tc=5.0 min CN=46 Runoff=0.90 cfs 0.080 af
Pond I-1: North Ex. Infiltration Units Discarded=0.09	Peak Elev=308.89' Storage=2,061 cf Inflow=2.86 cfs 0.290 af cfs 0.150 af Primary=3.40 cfs 0.141 af Outflow=3.48 cfs 0.290 af
	Peak Elev=284.93' Storage=5,355 cf Inflow=4.37 cfs 0.400 af cfs 0.308 af Primary=1.77 cfs 0.092 af Outflow=1.99 cfs 0.400 af
Link DP-1:	Inflow=3.49 cfs 0.257 af Primary=3.49 cfs 0.257 af
Link DP-2:	Inflow=0.90 cfs 0.080 af Primary=0.90 cfs 0.080 af

Total Runoff Area = 4.419 ac Runoff Volume = 0.794 af Average Runoff Depth = 2.16" 75.04% Pervious = 3.316 ac 24.96% Impervious = 1.103 ac

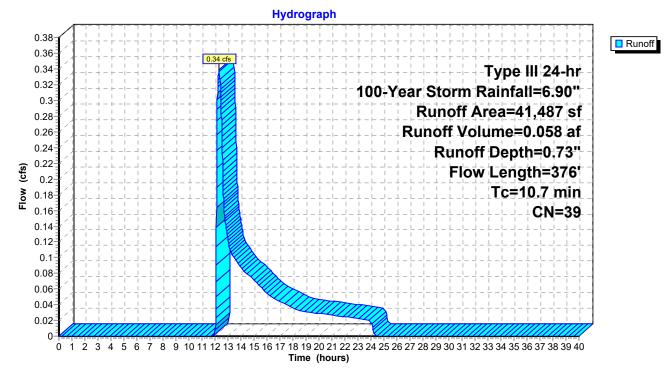

Summary for Subcatchment 101A-1:

Runoff = 0.42 cfs @ 12.30 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.071 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

_	A	rea (sf)	CN [Description		
_		50,538	39 >	>75% Gras	s cover, Go	bod, HSG A
_		50,538		100.00% P	ervious Are	a
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.6	60	0.0100	0.12		Sheet Flow,
	0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
_	0.7	108	0.0050	2.63	0.52	
	9.7	210	Total			

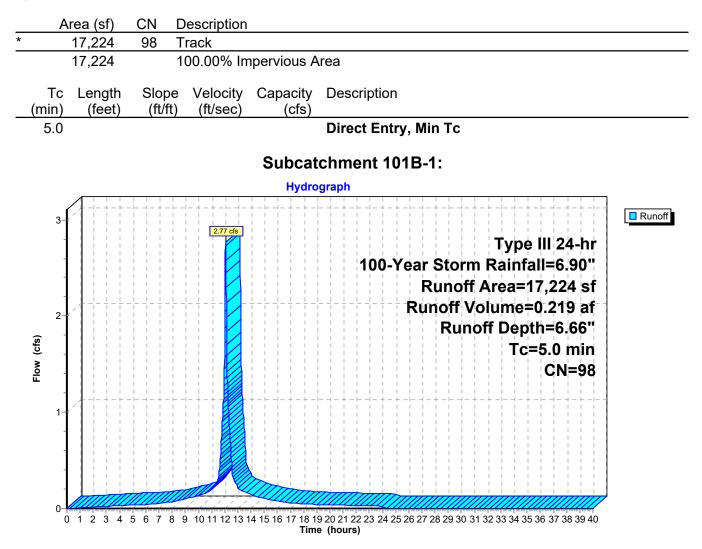
Subcatchment 101A-1:


Summary for Subcatchment 101A-2:

Runoff = 0.34 cfs @ 12.33 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.058 af, Depth= 0.73"

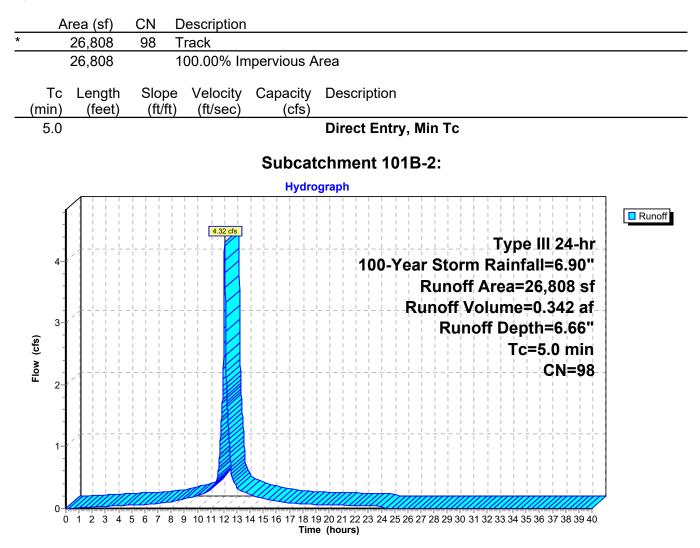
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

 A	rea (sf)	CN E	Description		
	41,487	39 >	•75% Gras	s cover, Go	ood, HSG A
	41,487	1	00.00% P	ervious Are	a
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.6	60	0.0100	0.12		Sheet Flow,
0.4	42	0.0100	1.61		Grass: Short n= 0.150 P2= 3.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
1.7	274	0.0050	2.63	0.52	
					6.0" Round Area= 0.2 sf Perim= 1.6' r= 0.13' n= 0.010 PVC, smooth interior
 10.7	376	Total			


Subcatchment 101A-2:

Summary for Subcatchment 101B-1:

Runoff = 2.77 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Infiltration Units 0.219 af, Depth= 6.66"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

Summary for Subcatchment 101B-2:

Runoff = 4.32 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Infiltration Units 0.342 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

21263_PRE	Type III 24-hr	100-Year Storm Rainfall=6.90"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 50

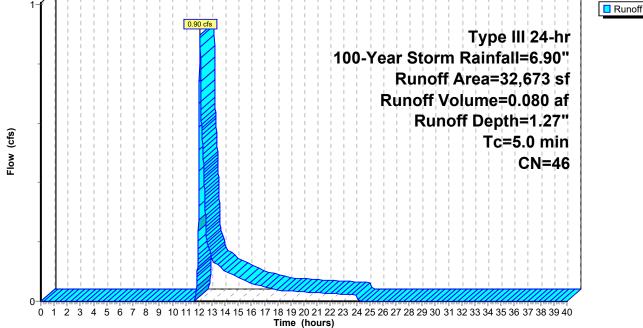
Summary for Subcatchment 101C:

Runoff = 0.12 cfs @ 12.32 hrs, Volume= 0.024 af, Depth= 0.53" Routed to Link DP-1 :

0.04-0.03-0.02-0.01-0-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

			·			
	A	rea (sf)		Description		
		15,798				bod, HSG A
		7,974			od, HSG A	
		23,772		Neighted A		
		23,772		100.00% Pe	ervious Are	28
(Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0	(ieet)	(1011)	(11/300)	(013)	Direct Entry, Min Tc
	5.0					Direct Littiy, Mill TC
					Subca	atchment 101C:
					Hydro	ograph
	0.13					
	0.12-			0.12 cfs		Type III 24-hr
	0.11-					100-Year Storm Rainfall=6.90"
	0.1-					Runoff Area=23,772 sf
	0.09					Runoff Volume=0.024 af
	0.08 Runoff Depth=0.53"					
(cfe)	0.07-		- + -			Tc=5.0 min
Elow (cfe)		_ /!- + - +	+ -			CN=36-
	2 0.06		+ - 1			
	0.05-	} ´ ¦ ¦ ¦				


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Subcatchment 102A:

Runoff = 0.90 cfs @ 12.09 hrs, Volume= Routed to Link DP-2 : 0.080 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

	A	rea (sf)	CN	Description					
*		763	98	Roof					
*		3,255	98	Track					
_		28,655	39	>75% Gras	s cover, Go	ood, HSG A			
		32,673	46	Weighted A	verage				
		28,655		87.70% Pe	rvious Area				
		4,018		12.30% Im	pervious Ar	ea			
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description			
	5.0					Direct Entry	, Min Tc		
	Subcatchment 102A:								
	Hydrograph								

Summary for Pond I-1: North Ex. Infiltration Units

[93] Warning: Storage range exceeded by 28.81' [58] Hint: Peaked 26.39' above defined flood level [88] Warning: Qout>Qin may require smaller dt or Finer Routing [85] Warning: Oscillations may require smaller dt or Finer Routing (severity=22) Inflow Area = 1.556 ac, 25.42% Impervious, Inflow Depth = 2.24" for 100-Year Storm event 2.86 cfs @ 12.08 hrs, Volume= Inflow = 0.290 af 3.48 cfs @ 12.08 hrs, Volume= Outflow = 0.290 af, Atten= 0%, Lag= 0.3 min Discarded = 0.09 cfs @ 9.07 hrs, Volume= 0.150 af 0.141 af

Primary = 3.40 cfs @ 12.08 hrs, Volume= Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 308.89' @ 12.08 hrs Surf.Area= 1,838 sf Storage= 2,061 cf Flood Elev= 282.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 97.7 min calculated for 0.290 af (100% of inflow) Center-of-Mass det. time= 97.6 min (887.2 - 789.6)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 75 Chambers in 3 Rows
#2	278.25'	88 cf	ADS_StormTech SC-310 +Cap x 6 Inside #4 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 6 Chambers in 2 Rows
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25 3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids
#4	278.00'	19 cf	4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3 146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids
		2,061 cf	Total Available Storage

Routing	Invert	Outlet Devices
Primary	279.08'	6.0" Round 6" PVC
		L= 113.0' CPP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900
		n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
Device 1	279.08'	6.0" Vert. 6" Maniford X 4.00 C= 0.600
		Limited to weir flow at low heads
Discarded	278.00'	2.000 in/hr Exfiltration over Surface area
	Primary Device 1	Primary 279.08' Device 1 279.08'

Discarded OutFlow Max=0.09 cfs @ 9.07 hrs HW=278.25' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=3.39 cfs @ 12.08 hrs HW=308.75' (Free Discharge) 1=6" PVC (Barrel Controls 3.39 cfs @ 17.26 fps) 2=6" Maniford (Passes 3.39 cfs of 20.51 cfs potential flow)

Hydrograph InflowOutflow Inflow Area=1.556 ac Discarded 3.48 cfs Primary Peak Elev=308.89' 3.40 cfs Storage=2,061 cf 3-Flow (cfs) 2 1 0.09 cfs 0-2 8 10 12 14 18 20 22 Ò 4 6 16 24 26 28 30 32 34 36 38 40 Time (hours)

Pond I-1: North Ex. Infiltration Units

Summary for Pond I-2: South Ex. Infiltration Units

[93] Warning: Storage range exceeded by 4.85'

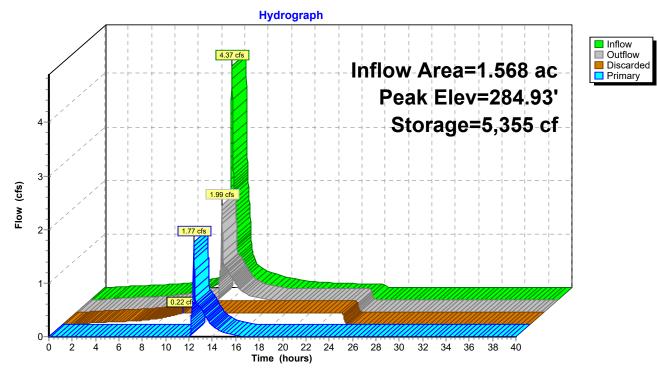
[58] Hint: Peaked 2.43' above defined flood level

[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=6)

Inflow Area =	1.568 ac, 39.25% Impervious,	Inflow Depth = 3.06" for 100-Year Storm event
Inflow =	4.37 cfs @ 12.07 hrs, Volume	= 0.400 af
Outflow =	1.99 cfs @ 12.38 hrs, Volume	= 0.400 af, Atten= 54%, Lag= 18.5 min
Discarded =	0.22 cfs @ 10.29 hrs, Volume	= 0.308 af
Primary =	1.77 cfs @ 12.38 hrs, Volume	= 0.092 af
Routed to Link	DP-1 :	

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 284.93' @ 12.38 hrs Surf.Area= 4,722 sf Storage= 5,355 cf Flood Elev= 282.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 121.4 min calculated for 0.400 af (100% of inflow) Center-of-Mass det. time= 121.4 min (892.0 - 770.6)

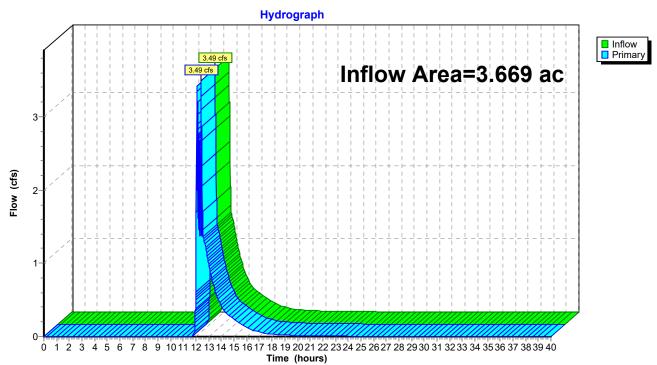

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			162 Chambers in 6 Rows
#2	278.25'	767 cf	ADS_StormTech SC-310 +Cap x 52 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			52 Chambers in 4 Rows
#3	278.00'	1,634 cf	20.67'W x 170.75'L x 2.08'H Prismatoid for 6 rows of 27
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids
		5,355 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Primary	279.08'	6.0" Round 6" PVC
			L= 75.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Manifold X 8.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area
#3	Discarded	278.00'	

Discarded OutFlow Max=0.22 cfs @ 10.29 hrs HW=278.05' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=1.72 cfs @ 12.38 hrs HW=284.63' (Free Discharge) -1=6" PVC (Inlet Controls 1.72 cfs @ 8.75 fps)

2=6" Manifold (Passes 1.72 cfs of 17.41 cfs potential flow)

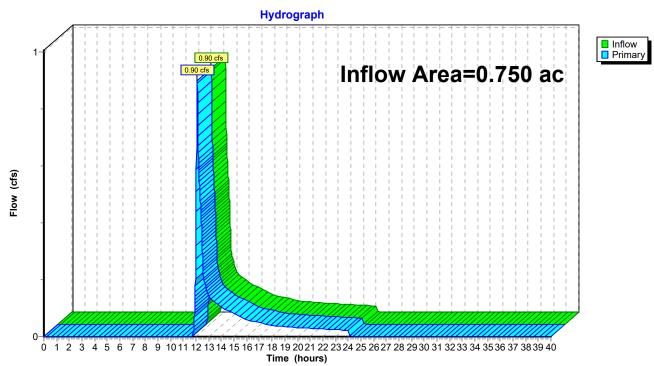


Pond I-2: South Ex. Infiltration Units

Summary for Link DP-1:

Inflow Area =	3.669 ac, 27.55% Impervious, Inflow Depth = 0.84" for 100-Year Storm event
Inflow =	3.49 cfs @ 12.38 hrs, Volume= 0.257 af
Primary =	3.49 cfs @ 12.38 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs



Link DP-1:

Summary for Link DP-2:

Inflow Area	a =	0.750 ac, 12.30% Impervious, Inflow Depth = 1.27" for 100-Year Storm event
Inflow	=	0.90 cfs @ 12.09 hrs, Volume= 0.080 af
Primary	=	0.90 cfs @ 12.09 hrs, Volume= 0.080 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

B. System Sizing

報告の言い

The INFILTRATORtm chamber can be utilized as a storm water system in either a trench or bed configuration depending on the design requirements. Infiltrator Systems Inc. recommends, whenever possible, to design chamber systems in a single layer to take advantage of soil depth to groundwater and increased soil interface area for infiltration. On sites where it is necessary to maximize storage, INFIL-TRATORtm chambers may be placed two or three layers deep with stone or gravel between the layers. Illustrations of some typical design examples can be seen in Appendix D. INFILTRATORtm chambers are available with an AASHTO rating of either H-10 or H-20. The H-10 unit is typically installed in non-traffic areas and can support H-10 loads (16,000 lbs/axle) with 12" of cover. The high strength H-20 unit (32,000 lbs per axle) allows for shallow installation under paved traffic areas with only 18" of cover. Appendix D. has standard details of single and double layer beds with H-10 and H-20 installations.

The length of the trench required or the bed area needed can be easily calculated when given the proper storage volumes for INFILTRATORth chambers. The following chart indicates the storage volume for INFILTRATORth leaching chambers.

NOTE: The Standard INFILTRATOR[™] chamber is primarily designed for septic system leachfields.

Туре	Ft³/ft	Ft ³ /unit	Gal/unit
Standard INFILTRATOR™	1.65	10.3	77
High Capacity INFILTRATOR™	2.60	16.3	122

STORAGE VOLUME

Examples of typical calculations for bed systems combining stone and INFILTRATOR[™] chambers are shown in the attached Appendix A.

The first step in sizing an INFILTRATOR[™] chamber system is determining a total volume of storage needed to handle the design flow. The design flow must be determined using proper hydrologic techniques and following local guidelines and regulations. Once the designer has calculated the total runoff volume, the site must be analyzed and a layer depth must be determined. The following chart is taken from Appendix B. and breaks down the various storage volumes for each layered system.

S	TORAGE VOLUME W (High Capacity	ITH STONE y)	
Total Storage (ft)	1 Layer	2 Layer	3 Layer
ft ³ /ft	3.50	7.00	10.52
ft ³ /ft ²	1.24	2.47	3.72
	ons are based on a sto	ne void ratio of 35%	0

<u>A quick and easy way to get the total number of INFILTRATORtm units needed is</u> to divide the total storage volume required (ft²) by 22 ft² per unit with stone.

Fuss & O'Neill Inc. Consulting Engineers

146 Hartford Road, Manchester, CT 06040-5921 TEL (860) 646-2469 FAX (860) 643-6313

78 Interstate Drive, West Springfield, MA 01089 TEL (413) 452-0445 FAX (413) 846-0497

SHOP DRAY	WING	project #: 95-057-S20		
ENGINEER'S REVIEW		RESPONSE REQUIRED CONTRACTOR	OF	PROJECT TITLE: WESTMINSTER TRACK
FURNISH AS SUBMITTED		NONE		SUBMITTAL #:
FURNISH AS NOTED		CONFIRM		
REJECTED		RESUBMIT		
ENGINEER'S REVIEW IS FOR GENERA CONCEPT AND CONTRACT DOCUME	NTS. M	SHALL	ITEMS:	
NOT BE CONSTRUED AS RELIEVING WITH THE PROJECT PLANS AND SPE THEREFROM. THE CONTRACTOR RE ACCURACY, FOR CONFIRMING AND DIMENSIONS, FOR SELECTING FABR OF ASSEMBLY, AND FOR PERFORMI	CIFICA EMAINS CORRE ICATIO NG HIS	Hancor Envirochambers		
FUSS & O'NEILL, INC., EN BY	IGINI	2 3		

COMMENTS:

System was designed using infiltrator units. Hancor units are 5.5" wider than infiltrator units and have a higher invert. It is the contractor's responsibility to adjust the pipe or unit inverts and to make sure that the extra width of these units can be accommodated while maintaining proper spacing between units as recommended by the manufacturer.

Confirm that units will accept 4" PVC manifold pipes.

Cost-Effective Solutions for On-Site Systems

THE JACK FARRELLY CO. 97 Old Poquonock Road Bloomfield, Connecticut 06002 (860) 243-9714 1-800-423-0112

Cost-Effective Solutions

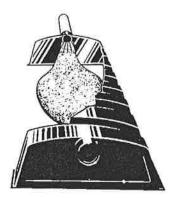
.

Two-for-One Chamber* EnviroChamber units can be divided in two by cutting on the center line, so halfchambers can be used to complete a trench. Saves time, reduces additional excavation costs, and eliminates using more product than is necessary.

Snap-on EqualFlo™ End Plate

Eliminates need for screws and power tools, saving time and labor.

on the center line, so half-


Lightweight, strong high-density polyethylene means no heavy equipment is needed, and installation is faster.

Unique Rib Design

Strong, innovative rib design requires less backfill material, saving material and labor costs.

* Patent pending

Designed-In Benefits

THE JACK FARRELLY CO.

97 Old Poquonock Road Bloomfield, Connecticut 06002 (860) 243-9714 1-800-423-0112

New Equal Distribution System

The unique end plate design allows more equal distribution of effluent from the distribution pipe into the first chamber. The EqualFlo™ distribution end plate minimizes scouring and erosion at the inlet area.

 H-10 or H-20 Load Rated Meets and exceeds load requirements.

New Equal Distribution 🔳 Chamber Design Benefits

Solid top prevents water and soil intrusion, while open bottom means no stone masking. <u>No filter fabric is</u> required.

Gravelless System

Eliminates stone masking, stone clean-up, and minimizes landscape damage. And there's no need to wait for gravel delivery trucks.

🔳 Unique Sidewall Design

Louvers are set at a 30° angle to help prevent soil intrusion. The end portion of the sidewall is closed off to help avoid soil intrusion through open louvers. Studies have shown that increased sidewall area enhances treatment by allowing more oxygen transfer through the soil for efficient biomat formation.

Value-Added Benefits

 High Density Polyethylene Construction
 Strong, lightweight,

abrasion-resistant and impervious to most chemicals found in sewage.

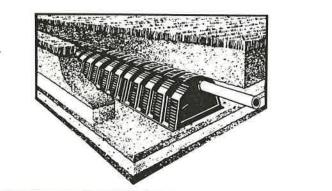
Made of 100% Recycled Materials

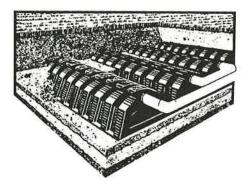
Allows use of an environmentally-friendly product.

Five-Year Warranty EnviroChamber units are warranted against defective materials and workmanship for five years.**

** See complete warranty on back for details.

Easy Steps for Installation*


- Excavate trench to required width and depth; level surface. Clear away any large stones or roots. Scour sidewall areas, if necessary.
- Install EnviroChamber units on trench bottom and snap together
- Install end plate and distribution pipe (pipe does not extend beyond end plate).
- Complete backfill operations.


 See EnviroChamber unit Installation Instructions. This product is solely intended for the conveyance of fluids. Access into this product for maintenance, inspection, or other reason should be done in strict accordance with OSHA recommendations for confined space entry.

System Configurations

Trench

Compare the EnviroChamber Unit Advantages

		oChamber™ H-10 <mark>or H-20</mark>)	Advantage* (%)	Infiltrator™ Chamber	Bio Diffuser™ Chamber
Size		12"x34"x75"		12"x34"x75"	11"x34"x75"
Size Sidew Capac Invert	all	8"	+33%	6"	6.5 "
Capac	-	87 gal.	+13%	77 gal.	N/A
Invert	: Height	8"	+14%	7"	6.5"
Size		17.5"x34"x75"		16"x34"x75"	14"x34"x75"
Z Sidew	all	14.5"	+32%	11"	9.5"
Capac	ity	138 gal.	+13%	122 gal.	N/A
Size Sidew Capac Invert	Height	14"	+27%	11"	9"
ompared to Infi	trator chamt	bers			

97 Old Poquonock Road Bloomfield, Connecticut 06002 (860) 243-9714 1-800-423-0112 Infiltrator™ is a trademark of Infiltrator Systems Inc. Bio Diffuser™ is a trademark of PSA, Inc.

Five Year Limited Warranty

(a) THE STRUCTURAL INTEGRITY OF EACH ENVIROCHAMBER™ UNIT, WHEN INSTALLED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS, IS WARRANTED TO THE ORIGINAL PURCHASER AGAINST DEFECTIVE MATERIALS AND WORKMANSHIP FOR FIVE YEARS FROM DATE OF MANUFACTURE. SHOULD A DEFECT APPEAR WITHIN THE WARRANTY PERIOD, PURCHASER MUST INFORM HANCOR, INC. OF THE DEFECT WITHIN FIFTEEN (15) DAYS. HANCOR, INC. WILL SUPPLY A REPLACEMENT CHAMBER. HANCOR, INC.'S LIABILITY SPECIFI-CALLY EXCLUDES THE COST OF REMOVAL AND/OR INSTALLATION OF THE CHAMBERS.

(b) THE WARRANTY IN SUBPARAGRAPH (a) IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE CHAMBERS, INCLUDING NO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE WARRANTY DOES NOT EXTEND TO PUNITIVE, EXEMPLARY, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES. THE COMPANY SHALL NOT BE LIABLE FOR PENALTIES OR LIQUI-DATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS, LABOR AND MATERIALS, OVERHEAD COSTS, OR OTHER LOSS OR EXPENSE INCURRED BY BUYER. SPECIFICALLY EXCLUDED FROM WARRANTY COVERAGE ARE: DEFECTS OR DAMAGE TO THE CHAMBERS DUE TO UNAUTHORIZED USE; ORDINARY WEAR AND TEAR; ALTERATION, ACCIDENT, MISUSE, INSTALLATION ERROR, ABUSE OR NEGLECT OF THE CHAMBERS; THE CHAMBERS BEING SUBJECTED TO STRESSES GREATER THAN THOSE PRESCRIBED IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT BY BUYER OF IMPROPER MATERIALS INTO BUYER'S SYSTEM; OR ANY OTHER EVENT NOT CAUSED BY THE COMPANY.

FURTHERMORE, IN NO EVENT SHALL THE COMPANY BE RESPON-SIBLE FOR ANY LOSS OR DAMAGE TO THE BUYER, THE CHAMBERS OR ANY THIRD PARTY RESULTING FROM ITS INSTALLATION OR SHIPMENT. BUYER SHALL BE SOLELY RESPONSIBLE FOR ENSURING THAT INSTALLATION OF THE SYSTEM IS COMPLETED IN ACCORDANCE WITH ALL APPLICABLE LAWS, CODES, RULES AND REGULATIONS.

(c) NO REPRESENTATIVE OF THE COMPANY HAS THE AUTHORITY TO CHANGE THIS WARRANTY IN ANY MANNER WHATSOEVER, OR TO EXTEND THIS WARRANTY. NO WARRANTY APPLIES TO ANY PARTY OTHER THAN TO THE ORIGINAL BUYER.

Hancor ... Offering a Full Line of Products for On-Site Waste Management

(

Sewage Ejector Sumps

Norwesco™ Septic Tanks

Gravelless Pipe

Distribution Sumps

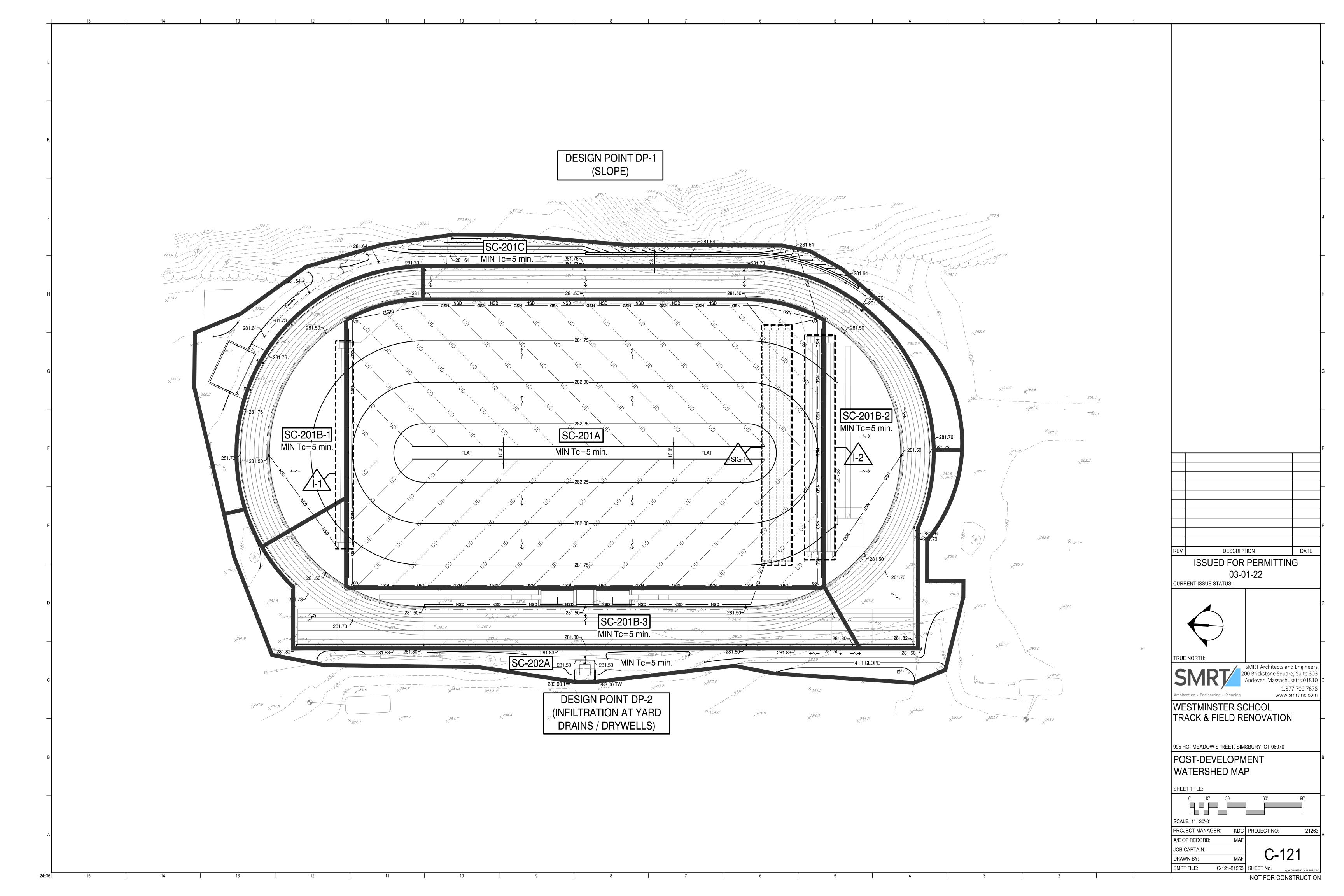
Distribution Boxes

Co-Extruded Smoothwall Sewer & Drain Pine

Alternator Valves

For Distributor's Use:

THE JACK FARRELLY CO.


97 Old Poquonock Road Bloomfield, Connecticut 06002 (860) 243-9714 1-800-423-0112



Hancor, Inc. 401 Olive St. Findlay, Ohio 45840 Phone 1-800-2-HANCOR, Ext. 242 Fax 419-424-8302

© 1995 Hancor. Inc. Printed in U.S.A. Hancor®, EnviroChamber™ and EqualFlo™ are trademarks of Hancor, Inc. Norwesco™ is a trademark of Norwesco, Inc.

#1201

Eve	ent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	2-Year Storm	Type III 24-hr		Default	24.00	1	3.20	2
	2	10-Year Storm	Type III 24-hr		Default	24.00	1	4.70	2
	3	25-Year Storm	Type III 24-hr		Default	24.00	1	5.50	2
	4	100-Year Storm	Type III 24-hr		Default	24.00	1	6.90	2

Rainfall Events Listing (selected events)

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.477	39	>75% Grass cover, Good, HSG A (201C, 202A)
0.020	98	Concrete Pavement (201C)
0.107	98	Concrete Sidewalk (201B-1, 201B-2, 201B-3)
0.005	98	Filming Tower (202A)
0.020	98	Roof (201C)
1.467	98	Track (201B-1, 201B-2, 201B-3)
2.030	98	Turf Field (201A)
0.011	30	Woods, Good, HSG A (201C)
4.136	91	TOTAL AREA

Soil Listing (selected nodes)

A	rea	Soil	Subcatchment
(acr	res)	Group	Numbers
0.4	488	HSG A	201C, 202A
0.0	000	HSG B	
0.0	000	HSG C	
0.0	000	HSG D	
3.0	648	Other	201A, 201B-1, 201B-2, 201B-3, 201C, 202A
4.	136		TOTAL AREA

21263_POST

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Printed 2/28/2022 Page 5

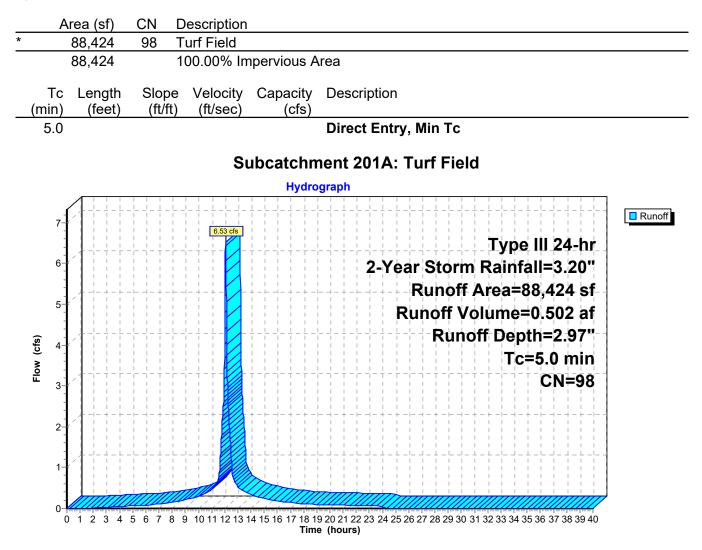
⊣SG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.477	0.000	0.000	0.000	0.000	0.477	>75% Grass cover, Good	201C, 202A
0.000	0.000	0.000	0.000	0.020	0.020	Concrete Pavement	202A 201C
0.000	0.000	0.000	0.000	0.107	0.107	Concrete Sidewalk	201B-1,
							201B-2, 201B-3
0.000	0.000	0.000	0.000	0.005	0.005	Filming Tower	202A
0.000	0.000	0.000	0.000	0.020	0.020	Roof	201C
0.000	0.000	0.000	0.000	1.467	1.467	Track	201B-1,
							201B-2,
							201B-3
0.000	0.000	0.000	0.000	2.030	2.030	Turf Field	201A
0.011	0.000	0.000	0.000	0.000	0.011	Woods, Good	201C
0.488	0.000	0.000	0.000	3.648	4.136	TOTAL AREA	

Ground Covers (selected nodes)

21263_POST

Prepared by SMRT

HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC


Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment201A: Turf Field	Runoff Area=88,424 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=6.53 cfs 0.502 af
Subcatchment201B-1:	Runoff Area=15,166 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=1.12 cfs 0.086 af
Subcatchment201B-2:	Runoff Area=28,876 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=2.13 cfs 0.164 af
Subcatchment201B-3:	Runoff Area=24,513 sf 100.00% Impervious Runoff Depth=2.97" Tc=5.0 min CN=98 Runoff=1.81 cfs 0.139 af
Subcatchment201C:	Runoff Area=6,349 sf 27.28% Impervious Runoff Depth=0.22" Tc=5.0 min CN=54 Runoff=0.01 cfs 0.003 af
Subcatchment202A:	Runoff Area=16,840 sf 1.28% Impervious Runoff Depth=0.00" Tc=5.0 min CN=40 Runoff=0.00 cfs 0.000 af
Pond I-1: North Ex. Units Discarded=0.09	Peak Elev=279.14' Storage=1,384 cf Inflow=1.12 cfs 0.086 af cfs 0.085 af Primary=0.01 cfs 0.001 af Outflow=0.09 cfs 0.086 af
Pond I-2: South Ex. Units Discarded=0.22	Peak Elev=278.76' Storage=2,345 cf Inflow=2.13 cfs 0.164 af cfs 0.164 af Primary=0.00 cfs 0.000 af Outflow=0.22 cfs 0.164 af
Pond SIG-1: New Storage Discarded=0.20	Peak Elev=279.01' Storage=1,914 cf Inflow=1.81 cfs 0.139 af cfs 0.139 af Primary=0.00 cfs 0.000 af Outflow=0.20 cfs 0.139 af
Pond TF: Discarded=4.09	Peak Elev=280.54' Storage=1,133 cf Inflow=6.53 cfs 0.502 af cfs 0.502 af Primary=0.00 cfs 0.000 af Outflow=4.09 cfs 0.502 af
Link DP-1:	Inflow=0.02 cfs 0.003 af Primary=0.02 cfs 0.003 af
Link DP-2:	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
	$P_{0} = P_{0} = f_{0} V_{0} V_{0} = 0.004 \text{ of } A_{0} = 0.004 \text{ of } P_{0} = 0.004 $

Total Runoff Area = 4.136 ac Runoff Volume = 0.894 af Average Runoff Depth = 2.59" 11.79% Pervious = 0.488 ac 88.21% Impervious = 3.648 ac

Summary for Subcatchment 201A: Turf Field

Runoff = 6.53 cfs @ 12.07 hrs, Volume= Routed to Pond TF : 0.502 af, Depth= 2.97"

Summary for Subcatchment 201B-1:

Runoff = 1.12 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Units 0.086 af, Depth= 2.97"

	(
Area		Description		
* 14	234 98	Track	.1 11 .	
<u> </u>	932 98	Concrete Si		
	166 98	Weighted A		Area
15	166	100.00% Im	ipervious A	Alea
	ength Slop		Capacity	Description
<u>(min)</u> 5.0	(feet) (ft/f	t) (ft/sec)	(cfs)	Direct Entry, Min Tc
5.0				Direct Entry, Min TC
			Subcat	tchment 201B-1:
			Hydro	ograph
Elow (cts)		1.12 cfs		Type III 24-hr 2-Year Storm Rainfall=3.20" Runoff Area=15,166 sf Runoff Volume=0.086 af Runoff Depth=2.97" Tc=5.0 min CN=98

Summary for Subcatchment 201B-2:

Runoff = 2.13 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Units 0.164 af, Depth= 2.97"

/ *	Area (sf) 26,786 2,090 28,876 28,876	98 Weigh	iption ete Sidewalk ited Average 0% Impervious A	vrea
Tc (min)	Length (feet)		ocity Capacity /sec) (cfs)	Description
5.0				Direct Entry, Min Tc
			Subcat	chment 201B-2:
			Hydro	ygraph
Flow (cfs)				Type III 24-hr 2-Year Storm Rainfall=3.20" Runoff Area=28,876 sf Runoff Volume=0.164 af Runoff Depth=2.97" Tc=5.0 min
- 1- 0-				CN≒98 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)

Summary for Subcatchment 201B-3:

Runoff = 1.81 cfs @ 12.07 hrs, Volume= Routed to Pond SIG-1 : New Storage 0.139 af, Depth= 2.97"

<u>م</u> * *	xrea (sf) 22,884 1,629 24,513 24,513	98 T 98 C 98 V	Description Track Concrete S Veighted A 00.00% In	idewalk	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Min Tc
				Subcat	chment 201B-3:
				Hydro	graph
2- - - -		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Type III 24-hr 2-Year Storm Rainfall=3.20" Runoff Area=24,513 sf Runoff Volume=0.139 af Runoff Depth=2.97"
-1 Elow (cts)					Tc=5.0 min CN=98
(J I Z J 4	5018	9 10 11 12 13		9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)

21263_POST	Type III 24-hr	2-Year Storm Rainfall=3.20"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/	n 00729 © 2021 HydroCAD Software Solutions LLC	Page 11

Summary for Subcatchment 201C:

Runoff = 0.01 cfs @ 12.34 hrs, Volume= Routed to Link DP-1 : 0.003 af, Depth= 0.22"

	А	rea (sf)	CN I	Description							
*	-	864		Roof							
*		868		98 Concrete Pavement							
		477		30 Woods, Good, HSG A							
		4,140				ood, HSG A					
		6,349		Weighted A							
		4,617 1,732		72.72% Pei 27.28% Imp							
		1,752	4	27.2070 1114		ca					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	5.0					Direct Entry,	Min Tc				
					Subca	atchment 201	C:				
					Hydro	ograph					
	0.01: 0.01: 0.01 0.00 0.002						r Storm Ra Runoff A Inoff Volu	ype III 24-hr ainfall=3.20" rea=6,349 sf me=0.003 af Depth=0.22"	Runoff		
	00.0 (cts)	7	· + -!- + - + - 					Tc=5.0 min			
	0.00		+ - - + - + -	-1		- + - - + - + - + -	+ - + - -	CN=54			
	0.00	i ja titititi	·								
	0.00			-!!!!- 		$-\frac{1}{1} - \frac{1}{1} - 1$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	0.00	3 -									
	0.00	2	- + - - + - + - + - 								
	0.00	1 1 ■ / 1 = + -	· + - - + - + -					+++++			
		0 1 2 3	4 5 6 7	8 9 10 11 12 13			6 27 28 29 30 31 32	33 34 35 36 37 38 39 40			
					I Ir	ne (hours)					

21263_POST	Type III 24-hr 2-Ye	ear Storm Rainfall=3.20"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a s/r	00729 © 2021 HydroCAD Software Solutions LLC	Page 12

Summary for Subcatchment 202A:

Runoff = 0.00 cfs @ 24.00 hrs, Volume= Routed to Link DP-2 :

0.000-0-0-0-00.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Storm Rainfall=3.20"

	Area	(st)	CN I	Description										
*		215 98 Filming Tower												
	16,625 39 >75% Grass cover, Good, HSG A													
	16,840 40 Weighted Average													
		16,625 98.72% Pervious Area 215 1.28% Impervious Area												
	4	215		1.28% impe	ervious Are	а								
	Tc Le	ngth	Slope	Velocity	Capacity	Descrip	tion							
(n	nin) (i	feet)	(ft/ft)	(ft/sec)	(cfs)									
	5.0					Direct I	Entry,	, Min	Тс					
					Suboo	tchmer	at 204	2 A .						
							11 20	ZA :						
	Hydrograph													
	1						1 1 1	1 1 1				1 1		
	0.000	- + -								+ -		- -	- + - 	Runoff
	0.000												- + - 	Runoff
	0.000)e-III 2			 + - - + - 							- + - - + - 	Runoff
	0.000 0.000			4-hr	nfall=3.2	 + - - + - 								Runoff
	0.000	2-Y	ear St			 + - - + - 								Runoff
	0.000 0.000	2-Y Rui	ear St noff A	orm Rai	40 sf	 + - - + - 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Runoff
8	0.000	2-Y Rui Rui	ear St noff A noff V	orm Rai rea=16,8 olume=0	40 sf .000 af	 + - - + - 	0.00 cfs							Runoff
r (cfs)	0.000	2-Y Rui Rui Rui	ear St noff A noff V noff D	orm Raii rea=16,8 olume=0 epth=0.0	40 sf .000 af	 + - - + - 								Runoff
Flow (cfs)	0.000	2-Y Rui Rui Rui	ear St noff A noff V	orm Raii rea=16,8 olume=0 epth=0.0	40 sf .000 af	 + - - + - 								Runoff

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time (hours)

Summary for Pond I-1: North Ex. Units

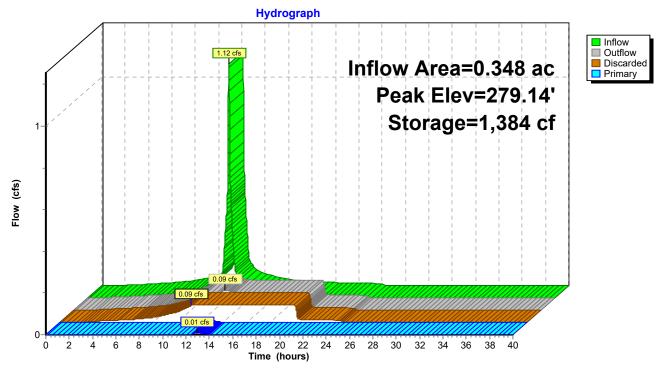
Inflow Area = 0.348 ac,100.00% Impervious, Inflow Depth = 2.97" for 2-Year Storm event Inflow 1.12 cfs @ 12.07 hrs, Volume= 0.086 af = Outflow 0.09 cfs @ 12.95 hrs, Volume= = 0.086 af, Atten= 92%, Lag= 52.7 min Discarded = 0.09 cfs @ 11.21 hrs, Volume= 0.085 af Primary = 0.01 cfs @ 12.95 hrs, Volume= 0.001 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.14' @ 12.95 hrs Surf.Area= 1,838 sf Storage= 1,384 cf Flood Elev= 281.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 117.5 min calculated for 0.086 af (100% of inflow) Center-of-Mass det. time= 117.4 min (872.9 - 755.5)

Volume	Invert	Avail.Storage	Storage Description					
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap					
#2	278.25'	88 cf	75 Chambers in 3 Rows ADS_StormTech SC-310 +Cap \times 6 Inside #4 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 6 Chambers in 2 Rows					
#3	278.00'	848 cf						
#4	278.00'	19 cf	3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids 4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3 146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids					
		2,061 cf	Total Available Storage					
Device	Routing	Invert Out	let Devices					
#1	Primary	L= ´ Inle	6.0" Round 6" PVC L= 113.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf					

#2Device 1279.08'6.0" Vert. 6" Maniford X 4.00C= 0.600Limited to weir flow at low heads#3Discarded278.00'2.000 in/hr Exfiltration over Surface area


Discarded OutFlow Max=0.09 cfs @ 11.21 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.01 cfs @ 12.95 hrs HW=279.14' (Free Discharge)

1–2=6" Maniford (Passes 0.01 cfs of 0.05 cfs potential flow)

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Summary for Pond I-2: South Ex. Units

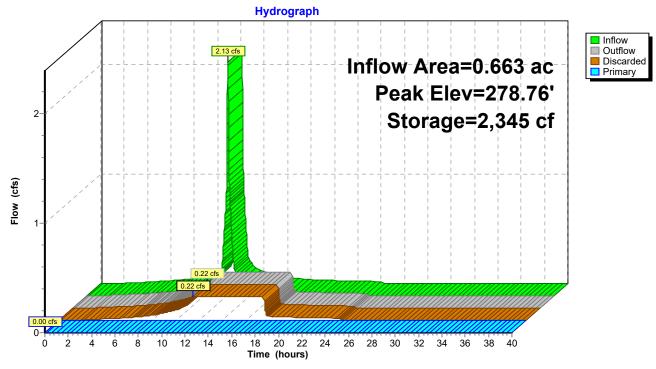
Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 2.97" for 2-Year Storm event Inflow 2.13 cfs @ 12.07 hrs, Volume= 0.164 af = Outflow 0.22 cfs @ 11.51 hrs, Volume= 0.164 af, Atten= 90%, Lag= 0.0 min = Discarded = 0.22 cfs @ 11.51 hrs, Volume= 0.164 af 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Primary = Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 278.76' @ 12.75 hrs Surf.Area= 4,722 sf Storage= 2,345 cf Flood Elev= 281.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 71.7 min calculated for 0.164 af (100% of inflow) Center-of-Mass det. time= 71.7 min (827.1 - 755.5)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			162 Chambers in 6 Rows
#2	278.25'	767 cf	ADS_StormTech SC-310 +Cap x 52 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			52 Chambers in 4 Rows
#3	278.00'	1,634 cf	
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids
		5,355 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary	279.08' 6.0 "	' Round 6" PVC
		L= 7	75.0' CPP, projecting, no headwall, Ke= 0.900

		-		L= 75.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900
				n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#	‡ 2	Device 1	279.08'	6.0" Vert. 6" Manifold X 8.00 C= 0.600
				Limited to weir flow at low heads
#	‡ 3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area


Discarded OutFlow Max=0.22 cfs @ 11.51 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=278.00' (Free Discharge) 1=6" PVC (Controls 0.00 cfs)

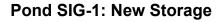
1–2=6" Manifold (Controls 0.00 cfs)

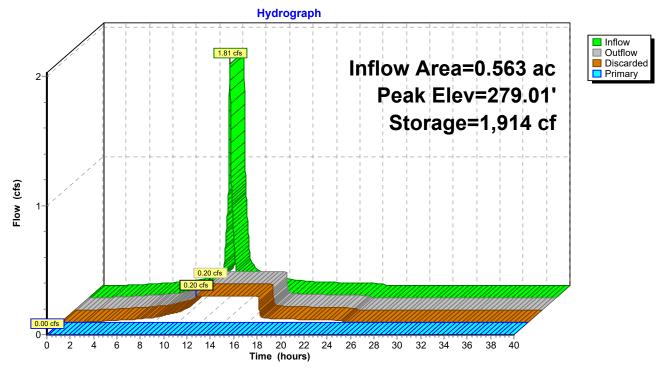
Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Summary for Pond SIG-1: New Storage

Inflow Area = 0.563 ac,100.00% Impervious, Inflow Depth = 2.97" for 2-Year Storm event Inflow 1.81 cfs @ 12.07 hrs, Volume= 0.139 af = Outflow 0.20 cfs @ 11.59 hrs, Volume= 0.139 af, Atten= 89%, Lag= 0.0 min = Discarded = 0.20 cfs @ 11.59 hrs, Volume= 0.139 af Primary 0.00 cfs @ 0.00 hrs, Volume= = 0.000 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.01' @ 12.65 hrs Surf.Area= 4,399 sf Storage= 1,914 cf Flood Elev= 281.50' Surf.Area= 4,399 sf Storage= 4,948 cf


Plug-Flow detention time= 60.8 min calculated for 0.139 af (100% of inflow) Center-of-Mass det. time= 60.7 min (816.2 - 755.5)


Volume	Invert	Avail.Storage	Storage Description
#1	278.67'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #2
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			182 Chambers in 7 Rows
#2	278.17'	2,265 cf	23.50'W x 187.20'L x 2.17'H Prismatoid for 7 rows of 26
			9,546 cf Overall - 2,683 cf Embedded = 6,863 cf x 33.0% Voids
		4,948 cf	Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Primary	279.50'	6.0" Round 6" PVC
			L= 23.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.50' / 278.85' S= 0.0283 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.50'	6.0" Vert. 6" Manifold X 7.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.17'	2.000 in/hr Exfiltration over Surface area
#3	Discarded	278.17'	2.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.20 cfs @ 11.59 hrs HW=278.20' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=278.17' (Free Discharge) 1=6" PVC (Controls 0.00 cfs) 2=6" Manifold (Controls 0.00 cfs) Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

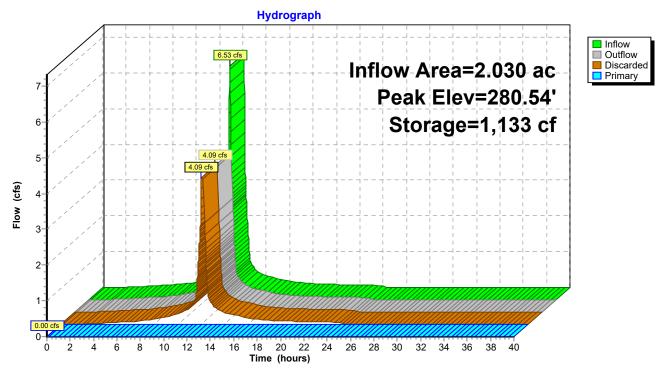
Summary for Pond TF:

Inflow Area = 2.030 ac,100.00% Impervious, Inflow Depth = 2.97" for 2-Year Storm event Inflow = 6.53 cfs @ 12.07 hrs, Volume= 0.502 af 4.09 cfs @ 12.01 hrs, Volume= Outflow 0.502 af, Atten= 37%, Lag= 0.0 min = 4.09 cfs @ 12.01 hrs, Volume= Discarded = 0.502 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 280.54' @ 12.16 hrs Surf.Area= 88,424 sf Storage= 1,133 cf Flood Elev= 281.50' Surf.Area= 88,424 sf Storage= 29,180 cf

Plug-Flow detention time= 1.6 min calculated for 0.502 af (100% of inflow) Center-of-Mass det. time= 1.6 min (757.1 - 755.5)

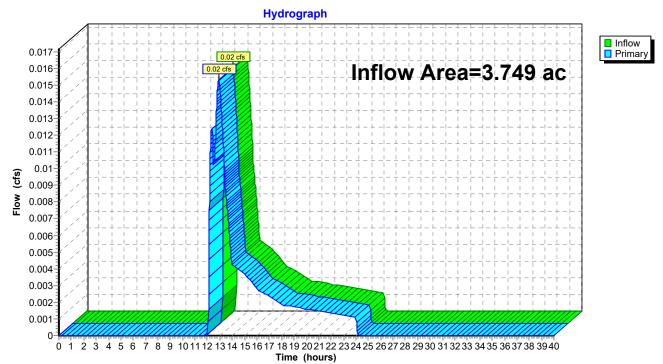
Volume	Inver	t Ava	il.Storage	e Storage Descri	otion			
#1	280.50	ľ	29,180 c	f Custom Stage	Data (Prismatio	c)Listed below (Recalc)		
Elevatio	n S	urf.Area	Voids	Inc.Store	Cum.Store			
(fee		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)			
280.5	50	88,424	0.0	0	0			
281.0	00	88,424	33.0	14,590	14,590			
281.5	50	88,424	33.0	14,590	29,180			
Device	Routing	In	ivert Ou	utlet Devices				
#1	Primary	278	L= Inl		re edge headwal 278.00' / 275.00'	ll, Ke= 0.500 S= 0.0448 '/' Cc= 0.900		
#2	Device 1	281	1.00' 3.0	n= 0.013, Flow Area= 0.79 sf 3.0" Vert. Orifice (panel drains) X 16.00 C= 0.600 Limited to weir flow at low heads				
#3	Discarded	280).50' 2.0	000 in/hr Exfiltrati	on over Surface	e area		
Discarded OutFlow Max=4.09 cfs @ 12.01 hrs HW=280.51' (Free Discharge)								


d OutFlow Max=4.09 cfs @ 12.01 hrs HW=280.51' (Free Discharge) **1**-3=Exfiltration (Exfiltration Controls 4.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=280.50' (Free Discharge) **1=Culvert** (Passes 0.00 cfs of 5.35 cfs potential flow) **2=Orifice (panel drains)** (Controls 0.00 cfs)

21263_POST

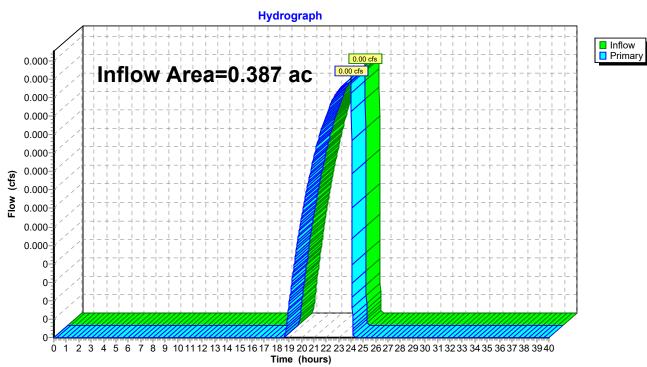
Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC


Pond TF:

Summary for Link DP-1:

Inflow Area =	3.749 ac, 97.17% Impervious, Inflow Depth = 0.01" for 2-Year Storm event
Inflow =	0.02 cfs @ 12.91 hrs, Volume= 0.003 af
Primary =	0.02 cfs @ 12.91 hrs, Volume= 0.003 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs


Link DP-1:

21263_POST	Type III 24-hr 2-Year Storm Rainfall=3.20"
Prepared by SMRT	Printed 2/28/2022
HydroCAD® 10.10-7a s/n 00729	© 2021 HydroCAD Software Solutions LLC Page 22

Summary for Link DP-2:

Inflow Area =	0.387 ac,	1.28% Impervious, Inflow D	epth = 0.00"	for 2-Year Storm event
Inflow =	0.00 cfs @	24.00 hrs, Volume=	0.000 af	
Primary =	0.00 cfs @	24.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

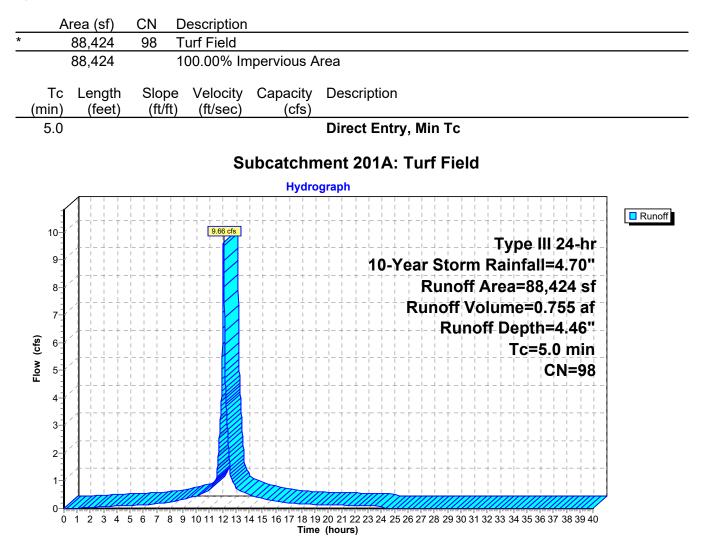
Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

21263_POST

Prepared by SMRT

Type III 24-hr 10-Year Storm Rainfall=4.70" Printed 2/28/2022 HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC Page 23


> Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment201A: Turf Field	Runoff Area=88,424 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=9.66 cfs 0.755 af
Subcatchment201B-1:	Runoff Area=15,166 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=1.66 cfs 0.130 af
Subcatchment201B-2:	Runoff Area=28,876 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=3.16 cfs 0.247 af
Subcatchment201B-3:	Runoff Area=24,513 sf 100.00% Impervious Runoff Depth=4.46" Tc=5.0 min CN=98 Runoff=2.68 cfs 0.209 af
Subcatchment201C:	Runoff Area=6,349 sf 27.28% Impervious Runoff Depth=0.78" Tc=5.0 min CN=54 Runoff=0.10 cfs 0.009 af
Subcatchment202A:	Runoff Area=16,840 sf 1.28% Impervious Runoff Depth=0.17" Tc=5.0 min CN=40 Runoff=0.01 cfs 0.006 af
Pond I-1: North Ex. Units Discarded=0.09	Peak Elev=279.64' Storage=1,793 cf Inflow=1.66 cfs 0.130 af cfs 0.105 af Primary=0.41 cfs 0.025 af Outflow=0.50 cfs 0.130 af
Pond I-2: South Ex. Units Discarded=0.22	Peak Elev=279.26' Storage=3,951 cf Inflow=3.16 cfs 0.247 af cfs 0.239 af Primary=0.08 cfs 0.008 af Outflow=0.30 cfs 0.247 af
Pond SIG-1: New Storage Discarded=0.20	Peak Elev=279.47' Storage=3,342 cf Inflow=2.68 cfs 0.209 af cfs 0.209 af Primary=0.00 cfs 0.000 af Outflow=0.20 cfs 0.209 af
Pond TF: Discarded=4.09	Peak Elev=280.61' Storage=3,128 cf Inflow=9.66 cfs 0.755 af cfs 0.755 af Primary=0.00 cfs 0.000 af Outflow=4.09 cfs 0.755 af
Link DP-1:	Inflow=0.48 cfs 0.042 af Primary=0.48 cfs 0.042 af
Link DP-2:	Inflow=0.01 cfs 0.006 af Primary=0.01 cfs 0.006 af
Total Dunoff Area = 4.42	Case Dunoff Valume = 4 250 of Auguan Dunoff Danth = 2 02

Total Runoff Area = 4.136 ac Runoff Volume = 1.356 af Average Runoff Depth = 3.93" 11.79% Pervious = 0.488 ac 88.21% Impervious = 3.648 ac

Summary for Subcatchment 201A: Turf Field

Runoff = 9.66 cfs @ 12.07 hrs, Volume= Routed to Pond TF : 0.755 af, Depth= 4.46"

Summary for Subcatchment 201B-1:

Runoff = 1.66 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Units 0.130 af, Depth= 4.46"

Area (sf) * 14,234 * 932 15,166	CN Description 98 Track 98 Concrete Sidewalk 98 Weighted Average	
15,166	100.00% Impervious Area	
Tc Length (min) (feet)) (ft/ft) (ft/sec) (cfs)	
5.0	Direct Entry, Min Tc	
	Subcatchment 201B-1:	
Elow (cts)	Type III 24-hr 10-Year Storm Rainfall=4.70" Runoff Area=15,166 sf Runoff Volume=0.130 af Runoff Depth=4.46" Tc=5.0 min CN=98	unoff

Summary for Subcatchment 201B-2:

Runoff = 3.16 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Units 0.247 af, Depth= 4.46"

	Ar	ea (sf)	CN	Description		
*		26,786	98	Track		
*		2,090	98 Concrete Sidewalk			
		28,876	98	Weighted A		
	-	28,876		100.00% Im	npervious A	Area
(r	Tc nin)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
	5.0					Direct Entry, Min Tc
					Subcat	tchment 201B-2:
					Hydro	ograph
Flow (cfs)	- 1-2 - -					Type III 24-hr 10-Year Storm Rainfall=4.70" Runoff Area=28,876 sf Runoff Volume=0.247 af Runoff Depth=4.46" Tc=5.0 min CN=98
	0 4	1 2 3 4	5678	6 9 10 11 12 13 1		19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)

Summary for Subcatchment 201B-3:

Runoff = 2.68 cfs @ 12.07 hrs, Volume= Routed to Pond SIG-1 : New Storage 0.209 af, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

*	Area (sf) 22,884 1,629 24,513 24,513	CN Description 98 Track 98 Concrete S 98 Weighted 100.00% I	Sidewalk	Area
To (min)	: Length	Slope Velocity (ft/ft) (ft/sec)	-	
5.0)			Direct Entry, Min Tc
			Subcat	tchment 201B-3:
5 Flow (cfs)			Hydro	Type III 24-hr 10-Year Storm Rainfall=4.70" Runoff Area=24,513 sf Runoff Volume=0.209 af Runoff Depth=4.46" Tc=5.0 min CN=98
0		5 6 7 8 9 10 11 12 13		19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 te (hours)

Summary for Subcatchment 201C:

Runoff = 0.10 cfs @ 12.10 hrs, Volume= Routed to Link DP-1 : 0.009 af, Depth= 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

	Area (sf)	CN D	escription					
*	864	98 R	3 Roof					
*	868							
	477		loods, Go	od, HSG A				
	4,140	39 >	75% Gras	s cover, Go	ood, HSG A			
	6,349		Veighted A					
	4,617			vious Area				
	1,732	2	7.28% Imp	ervious Ar	ea			
To (min		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0		(10,10)	(14000)	(010)	Direct Entry,	Min Tc		
					, ,			
				Subca	tchment 20 ⁴	1C:		
				Hydro	graph			
0.1 0.10 0 0.09)5 +-+ 1						Type III 24-hr	Runoff
0.0 30.0					1UY_C 		Rainfall=4.70" Area=6,349 sf	
0.0	8┋(↓ -¦- ¦- ¦-						1 - T - C - T - C - C - T - C -	
0.07 0.0				- <u> </u> _'' - <u> </u>			ume=0.009 af	
				+ - +		Runof	f Depth=0.78"	
0.06 0.0 0.0)6 - [+ +	Tc=5.0 min	
0.05 م 0.0 وم)5-* /	!! +		- L _' - E _ - + - E _	┙ _ ┶ _ '_	L _ L _' 	CN=54	
0.04	l5 *	- $ $					 - T -	
0.0								
0.03 0.0				· └ _'_ ∡ _ └ _' • ├ _ _ + _ + _ + _		L _ L _') _ ½ _ ½ _ 2 _ 2 _ 4 _ ½ _ ½ _ 2 _ 4 _ ½ _ 2 _ 4 _ ½ _ 2 _ 4 _ 4	
0.02	= /							
0.0	- /					$\frac{1}{1}$ $ \frac{1}{1}$ $-$		
0.01 0.0					→ _ ↓ _ _ , , , , , , , , , , , , , , , , ,	↓ _ L _ I _ ↓ _ L _ I + _ L _ I → _ + '		
0.00								
	0 1 2 3 4	5678	9 10 11 12 13		10 20 21 22 23 24 25 2	6 27 28 20 30 21 2	2 33 34 35 36 37 38 39 40	
	01234	5070	5 10 11 12 13		ie (hours)	0 21 20 29 30 31 3	2 00 04 00 00 01 00 08 40	

21263_POST	Type III 24-hr	10-Year Storm Rainfall=4.70"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 29

Summary for Subcatchment 202A:

Runoff = 0.01 cfs @ 12.48 hrs, Volume= Routed to Link DP-2 : 0.006 af, Depth= 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Storm Rainfall=4.70"

A	vrea (sf)	CN E	Description		
	215 98 Filming Tower				
	16,625				bod, HSG A
	16,840		Veighted A	verage vious Area	
	16,625 215	-	-	ervious Area	
	210	, i	.2070 mpc		ŭ
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.0					Direct Entry, Min Tc
				Subaa	atchment 202A:
				Hydro	ograph
0.01		+ - - + - + -	- + - + - - + - + 	· -ii - + -ii - · -!! - !!! -	- + - + - + -
0.01	1				
0.0 0.0					Type III 24-hr
0.00	9 /	 + - - + - + -			10-Year Storm Rainfall=4.70"
0.00 0.00					Runoff Area=16,840 sf
0.00	8 / + -	 + - - + - + - 			
0.00					Runoff Depth=0.17"
0.00 (gr		 - - + - 			Tc=5.0 min
00.0 (cfs)					
ш 0.00 0.00		i - +			
0.00		+ + - + - + -			
0.00 0.00	- /				
0.00		+ -!- + - + -		-1-+-+-1-+-	
0.00	- - - - - - - - - -				
0.00 0.00					
0.00					
	0 1 2 3 4	45678	3 9 10 11 12 13		19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 me (hours)

Summary for Pond I-1: North Ex. Units

Inflow Area = 0.348 ac,100.00% Impervious, Inflow Depth = 4.46" for 10-Year Storm event Inflow 1.66 cfs @ 12.07 hrs, Volume= 0.130 af = Outflow 0.50 cfs @ 12.37 hrs, Volume= = 0.130 af, Atten= 70%, Lag= 17.9 min Discarded = 0.09 cfs @ 10.33 hrs, Volume= 0.105 af 0.41 cfs @ 12.37 hrs, Volume= Primary = 0.025 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.64' @ 12.37 hrs Surf.Area= 1,838 sf Storage= 1,793 cf Flood Elev= 281.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 105.9 min calculated for 0.129 af (100% of inflow) Center-of-Mass det. time= 105.8 min (854.0 - 748.1)

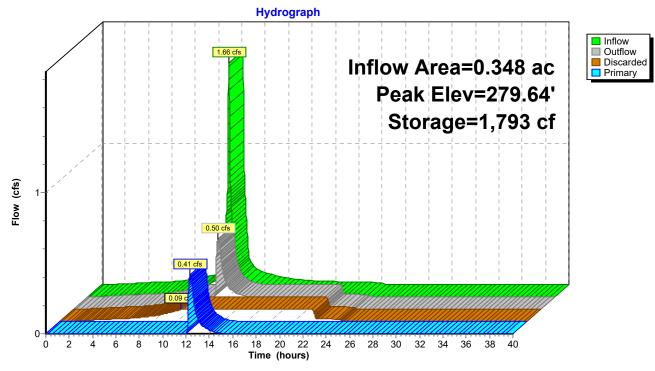
Volume	Invert	Avail.Stora	Storage Description			
#1	278.25'	1,106	cf ADS_StormTech SC-310 +Cap x 75 Inside #3			
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf			
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap			
			75 Chambers in 3 Rows			
#2	278.25'	88	cf ADS_StormTech SC-310 +Cap x 6 Inside #4			
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf			
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap			
			6 Chambers in 2 Rows			
#3	278.00'	848	cf 11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25			
			3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids			
#4	278.00'	19				
			146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids			
		2,061	cf Total Available Storage			
Device	Routing	Invert (Dutlet Devices			
#1	Primary	279.08'	5.0" Round 6" PVC			
		L	.= 113.0' CPP, projecting, no headwall, Ke= 0.900			
		I	nlet / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900			
		r	= 0.010 PVC, smooth interior, Flow Area= 0.20 sf			

279.08' 6.0" Vert. 6" Maniford X 4.00 C= 0.600

Limited to weir flow at low heads #3 Discarded 278.00' **2.000 in/hr Exfiltration over Surface area**

Discarded OutFlow Max=0.09 cfs @ 10.33 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.41 cfs @ 12.37 hrs HW=279.64' (Free Discharge) **1=6" PVC** (Inlet Controls 0.41 cfs @ 2.11 fps)


1–2=6" Maniford (Passes 0.41 cfs of 2.10 cfs potential flow)

#2

Device 1

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Summary for Pond I-2: South Ex. Units

Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 4.46" for 10-Year Storm event Inflow 3.16 cfs @ 12.07 hrs, Volume= 0.247 af = Outflow 0.30 cfs @ 12.85 hrs, Volume= = 0.247 af, Atten= 91%, Lag= 46.6 min Discarded = 0.22 cfs @ 11.08 hrs, Volume= 0.239 af 0.08 cfs @ 12.85 hrs, Volume= Primary = 0.008 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.26' @ 12.85 hrs Surf.Area= 4,722 sf Storage= 3,951 cf Flood Elev= 281.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 124.3 min calculated for 0.247 af (100% of inflow) Center-of-Mass det. time= 124.2 min (872.4 - 748.1)

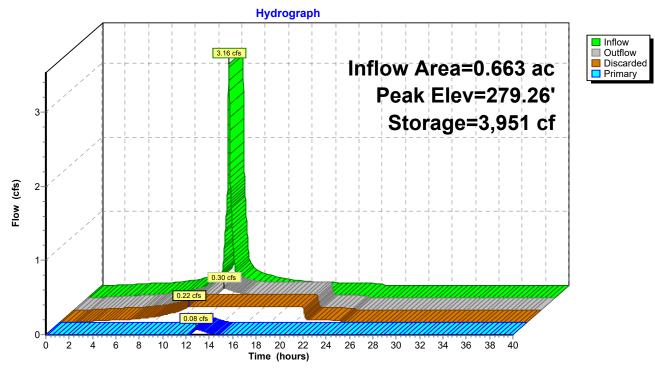
Volume	Invert	Avail.Storage	e Storage Description			
#1	278.25'	2,388 c	f ADS_StormTech SC-310 +Cap x 162 Inside #3			
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf			
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap			
			162 Chambers in 6 Rows			
#2	278.25'	767 c				
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf			
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap			
			52 Chambers in 4 Rows			
#3	278.00'	1,634 c				
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids			
#4	278.00'	566 c				
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids			
		5,355 c	f Total Available Storage			
Device	Routing	Invert O	utlet Devices			
#1	Primary	279.08' 6.	0" Round 6" PVC			
	-	L=	= 75.0' CPP, projecting, no headwall, Ke= 0.900			
		In	let / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900			
		n=	n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf			

279.08' 6.0" Vert. 6" Manifold X 8.00 C= 0.600

Limited to weir flow at low heads #3 Discarded 278.00' **2.000 in/hr Exfiltration over Surface area**

Discarded OutFlow Max=0.22 cfs @ 11.08 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.08 cfs @ 12.85 hrs HW=279.26' (Free Discharge) 1=6" PVC (Inlet Controls 0.08 cfs @ 1.16 fps)

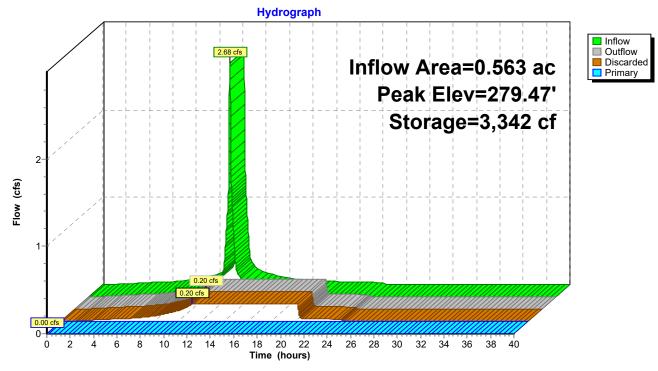

1–2=6" Manifold (Passes 0.08 cfs of 0.77 cfs potential flow)

#2

Device 1

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Summary for Pond SIG-1: New Storage


Inflow A Inflow Outflow Discarde Primary Route	= = ed =	2.68 cfs @ 12 0.20 cfs @ 11 0.20 cfs @ 11 0.00 cfs @ 0	2.07 h I.19 h I.19 h	rs, Volume= 0.209 af, Atten= 92%, Lag= 0.0 min ns, Volume= 0.209 af			
Peak El	Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.47' @ 13.04 hrs Surf.Area= 4,399 sf Storage= 3,342 cf Flood Elev= 281.50' Surf.Area= 4,399 sf Storage= 4,948 cf						
		n time= 118.4 m t. time= 118.4 m		lculated for 0.209 af (100% of inflow)			
			,	,			
Volume	Inve	ert Avail.Storage Storage Description					
#1	278.6	7' 2,68	3 cf				
				Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf			
				Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap			
				182 Chambers in 7 Rows			
#2	278.1	7' 2,26	5 cf				
				9,546 cf Overall - 2,683 cf Embedded = 6,863 cf x 33.0% Voids			
		4,94	8 cf	Total Available Storage			
Device	Routing	Invert	Outl	et Devices			
#1	Primary	279.50'		Round 6" PVC			
π I	Timary	210.00		3.0' CPP, projecting, no headwall, Ke= 0.900			
				/ Outlet Invert= 279.50' / 278.85' S= 0.0283 '/' Cc= 0.900			
			n = 0.010 PVC, smooth interior, Flow Area = 0.20 sf				
#2	Device 1	279.50'		Vert. 6" Manifold X 7.00 C= 0.600			
				ted to weir flow at low heads			
#3	Discarde	d 278.17'	2.000 in/hr Exfiltration over Surface area				

Discarded OutFlow Max=0.20 cfs @ 11.19 hrs HW=278.20' (Free Discharge)

3=Exfiltration (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=278.17' (Free Discharge) 1=6" PVC (Controls 0.00 cfs) 2=6" Manifold (Controls 0.00 cfs) Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

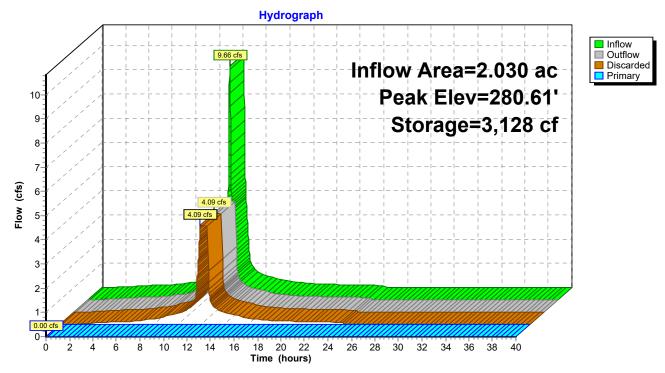
Summary for Pond TF:

Inflow Area = 2.030 ac,100.00% Impervious, Inflow Depth = 4.46" for 10-Year Storm event Inflow = 9.66 cfs @ 12.07 hrs, Volume= 0.755 af 4.09 cfs @ 11.95 hrs, Volume= Outflow = 0.755 af, Atten= 58%, Lag= 0.0 min 4.09 cfs @ 11.95 hrs, Volume= Discarded = 0.755 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 280.61' @ 12.24 hrs Surf.Area= 88,424 sf Storage= 3,128 cf Flood Elev= 281.50' Surf.Area= 88,424 sf Storage= 29,180 cf

Plug-Flow detention time= 3.5 min calculated for 0.755 af (100% of inflow) Center-of-Mass det. time= 3.5 min (751.6 - 748.1)

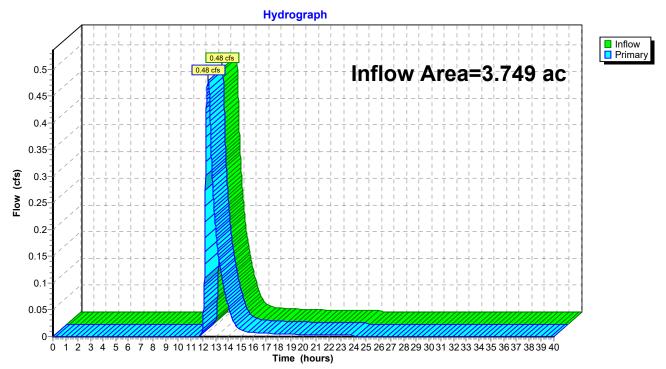
Volume	Inver	t Ava	il.Storage						
#1	280.50)'	29,180 c	f Custom Stage	Data (Prismatic	Listed below (Recalc)			
Elevatio	on S	Surf.Area	Voids	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)				
280.5	50	88,424	0.0	0	0				
281.0	00	88,424	33.0	14,590	14,590				
281.5	50	88,424	33.0	14,590	29,180				
Device	Routing	lr	nvert Ou	Itlet Devices					
#1	Primary	278	3.00' 12	.0" Round Culve	rt				
			L=	67.0' CPP, squar	re edge headwall	l, Ke= 0.500			
			Inl	et / Outlet Invert= 2	278.00' / 275.00'	S= 0.0448 '/' Cc= 0.900			
			n=	0.013, Flow Area	= 0.79 sf				
#2	Device 1	28 <i>°</i>	1.00' 3.0	,					
			Lir	imited to weir flow at low heads					
#3	Discardec	l 280).50' 2.0	000 in/hr Exfiltration over Surface area					
Discarded OutFlow Max=4.09 cfs @ 11.95 hrs HW=280.51' (Free Discharge)									


ed OutFlow Max=4.09 cts @ 11.95 hrs HW=280.51' (Free Discharge) **1**-3=Exfiltration (Exfiltration Controls 4.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=280.50' (Free Discharge) **1=Culvert** (Passes 0.00 cfs of 5.35 cfs potential flow) **2=Orifice (panel drains)** (Controls 0.00 cfs)

21263_POST

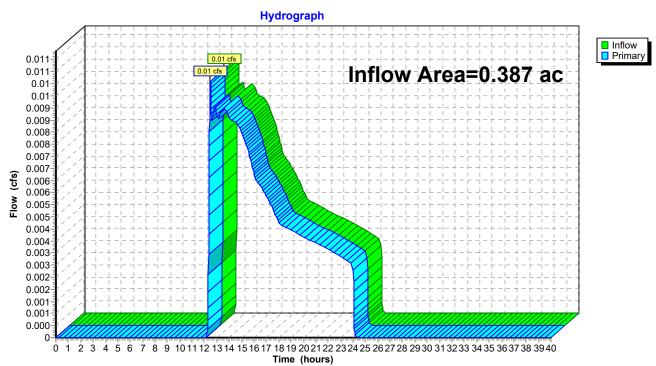
Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC


Pond TF:

Summary for Link DP-1:

Inflow Area	a =	3.749 ac, 97.17% Impervious, Inflow Depth = 0.13" for 10-Year Storm event
Inflow	=	0.48 cfs @ 12.41 hrs, Volume= 0.042 af
Primary	=	0.48 cfs @ 12.41 hrs, Volume= 0.042 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs



Link DP-1:

Summary for Link DP-2:

Inflow Area =	0.387 ac,	1.28% Impervious, Inflow E	0epth = 0.17" for 10-Year St	orm event
Inflow =	0.01 cfs @	12.48 hrs, Volume=	0.006 af	
Primary =	0.01 cfs @	12.48 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0	.0 min

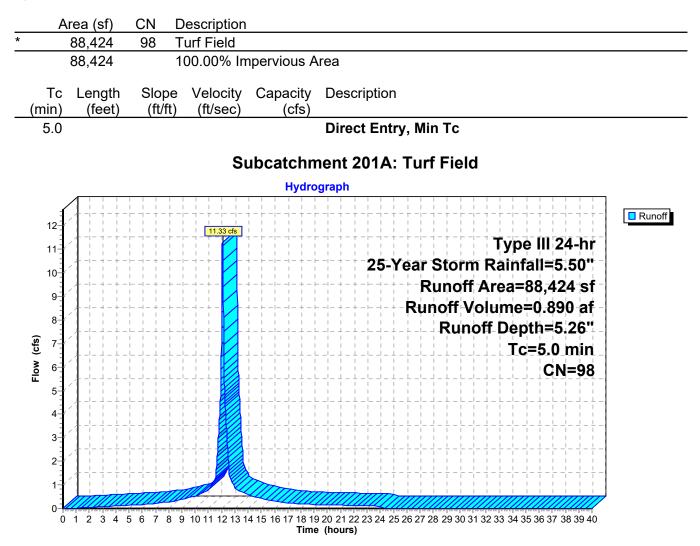
Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

21263_POST

Prepared by SMRT

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment201A: Turf Field	Runoff Area=88,424 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=11.33 cfs 0.890 af
Subcatchment201B-1:	Runoff Area=15,166 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=1.94 cfs 0.153 af
Subcatchment201B-2:	Runoff Area=28,876 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=3.70 cfs 0.291 af
Subcatchment201B-3:	Runoff Area=24,513 sf 100.00% Impervious Runoff Depth=5.26" Tc=5.0 min CN=98 Runoff=3.14 cfs 0.247 af
Subcatchment201C:	Runoff Area=6,349 sf 27.28% Impervious Runoff Depth=1.17" Tc=5.0 min CN=54 Runoff=0.17 cfs 0.014 af
Subcatchment202A:	Runoff Area=16,840 sf 1.28% Impervious Runoff Depth=0.36" Tc=5.0 min CN=40 Runoff=0.05 cfs 0.012 af
Pond I-1: North Ex. Units Discarded=0.09	Peak Elev=279.99' Storage=2,007 cf Inflow=1.94 cfs 0.153 af cfs 0.113 af Primary=0.61 cfs 0.039 af Outflow=0.69 cfs 0.153 af
Pond I-2: South Ex. Units Discarded=0.22	Peak Elev=279.55' Storage=4,531 cf Inflow=3.70 cfs 0.291 af cfs 0.260 af Primary=0.35 cfs 0.031 af Outflow=0.57 cfs 0.291 af
Pond SIG-1: New Storage Discarded=0.20	Peak Elev=279.72' Storage=3,973 cf Inflow=3.14 cfs 0.247 af cfs 0.236 af Primary=0.11 cfs 0.011 af Outflow=0.31 cfs 0.247 af
Pond TF: Discarded=4.09	Peak Elev=280.66' Storage=4,569 cf Inflow=11.33 cfs 0.890 af cfs 0.890 af Primary=0.00 cfs 0.000 af Outflow=4.09 cfs 0.890 af
Link DP-1:	Inflow=1.02 cfs 0.095 af Primary=1.02 cfs 0.095 af
Link DP-2:	Inflow=0.05 cfs 0.012 af Primary=0.05 cfs 0.012 af
Tatal Dumoff Anna - 440	$c = c$ $D_{\rm eff} = 0.00$ of $A_{\rm eff} = 0.00$

Total Runoff Area = 4.136 ac Runoff Volume = 1.606 af Average Runoff Depth = 4.66" 11.79% Pervious = 0.488 ac 88.21% Impervious = 3.648 ac

Summary for Subcatchment 201A: Turf Field

Runoff = 11.33 cfs @ 12.07 hrs, Volume= Routed to Pond TF : 0.890 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

Summary for Subcatchment 201B-1:

Runoff = 1.94 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Units 0.153 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	Area (sf)	CN D	escription					
*	14,234	98 T	rack					
*	932							
	15,166		/eighted A					
	15,166 100.00% Impervious Area							
To (min)	0	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0)				Direct Entry, Min Tc			
				Subcat	tchment 201B-1:			
				Hydro	ograph			
2			1.94 cfs		Type III 24-hr			
	-				25-Year Storm Rainfall=5.50"			
					Runoff Area=15,166 sf			
					Runoff Volume=0.153 af			
					Runoff Depth=5.26"			
(cfs)					Tc=5.0 min			
Flow (cfs)					· · · · · · · · · · · · · · · · · · ·			
ш								
				Imm				
0			. 10.11.12.12.					
	0 1 2 3 4	56789	0 10 11 12 13 1		l9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)			

Summary for Subcatchment 201B-2:

Runoff = 3.70 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Units 0.291 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

*	Area (sf) 26,786 2,090 28,876 28,876	CNDescription98Track98Concrete S98Weighted A100.00% Im	verage	160
<u> </u>	Tc Length nin) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description
:	5.0		Subcat	Direct Entry, Min Tc chment 201B-2:
Flow (cfs)		3.70 cfs		Pgraph Type III 24-hr 25-Year Storm Rainfall=5.50" Runoff Area=28,876 sf Runoff Volume=0.291 af Runoff Depth=5.26" Tc=5.0 min CN=98 920212223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)

Summary for Subcatchment 201B-3:

Runoff = 3.14 cfs @ 12.07 hrs, Volume= Routed to Pond SIG-1 : New Storage 0.247 af, Depth= 5.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

Д	rea (sf)	CN I	Description			
*	22,884		Frack			
*	1,629 98 Concrete Sidewalk					
	24,513 98 Weighted Average					
	24,513		100.00% Im	npervious A	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry, Min Tc	
				Subcat	chment 201B-3:	
				Hydro	ograph	
3- - - - - - - - - - - - - - - - - - -					Type III 24-hr 25-Year Storm Rainfall=5.50" Runoff Area=24,513 sf Runoff Volume=0.247 af Runoff Depth=5:26" Tc=5.0 min CN=98	
	0 1 2 3 4	5678	9 10 11 12 13 1		un nun nun nun nun nun nun nun nun nun	

Summary for Subcatchment 201C:

Runoff = 0.17 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : 0.014 af, Depth= 1.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

	A	rea (sf)	CN	Description				
*		864	98	Roof				
*		868	98	Concrete P	avement			
		477	30	Woods, Go	od, HSG A			
		4,140	39	>75% Gras	s cover, Go	bod, HSG A		
		6,349	54	Weighted A	Average			
		4,617		72.72% Pe	rvious Area	l		
		1,732		27.28% Im	pervious Ar	ea		
	Тс	Length	Slop			Description		
(n	nin)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	5.0					Direct Entry, Min Tc		

Subcatchment 201C:

21263_POST	Type III 24-hr	25-Year Storm Rainfall=5.50"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	s/n 00729 © 2021 HydroCAD Software Solutions LLC	Page 46

Summary for Subcatchment 202A:

Runoff = 0.05 cfs @ 12.35 hrs, Volume= Routed to Link DP-2 :

0.012 af, Depth= 0.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Storm Rainfall=5.50"

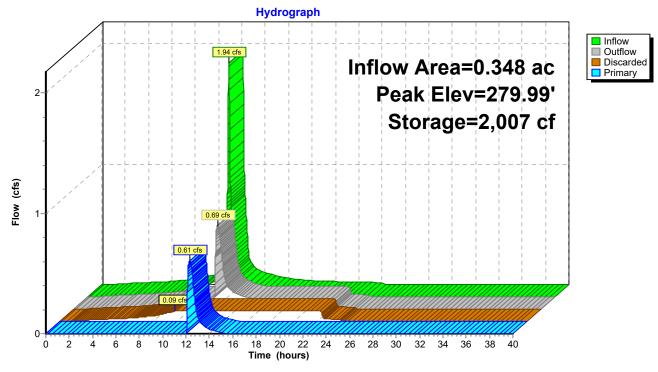
Α	vrea (sf)		Description					
	215 16,625							
	16,840							
	16,625	ę	98.72% Pei	vious Area				
	215	1.28% Impervious Area						
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Diverse Fusion Min Ta			
5.0					Direct Entry, Min Tc			
				Subca	atchment 202A:			
				Hydro	ograph			
0.05	55-1 1 1							
0.0	05		0.05 cfs		Type III 24-hr			
0.04	15				25-Year Storm Rainfall=5.50"			
0.0)4				Runoff Area=16,840 sf			
0.03					Runoff Volume=0.012 af -			
	╡╷┼╶┼╴┼╴				Runoff Depth=0.36"			
(cl) 0.0)3-*							
6 0.02	25				CN=40			
0.0)2							
0.01	15 + - 1 + - 1 + - 1 + -							
0.0)1							
0.00)5							
	0							

Summary for Pond I-1: North Ex. Units

Inflow Area = 0.348 ac,100.00% Impervious, Inflow Depth = 5.26" for 25-Year Storm event Inflow 1.94 cfs @ 12.07 hrs, Volume= 0.153 af = Outflow 0.69 cfs @ 12.31 hrs, Volume= = 0.153 af, Atten= 64%, Lag= 14.2 min Discarded = 0.09 cfs @ 9.85 hrs, Volume= 0.113 af 0.039 af Primary = 0.61 cfs @ 12.31 hrs, Volume= Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.99' @ 12.31 hrs Surf.Area= 1,838 sf Storage= 2,007 cf Flood Elev= 281.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 100.2 min calculated for 0.153 af (100% of inflow) Center-of-Mass det. time= 100.2 min (845.8 - 745.5)


Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			75 Chambers in 3 Rows
#2	278.25'	88 cf	ADS_StormTech SC-310 +Cap x 6 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			6 Chambers in 2 Rows
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25
			3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids
#4	278.00'	19 cf	4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3
			146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids
		2,061 cf	Total Available Storage
			-
Device	Routing	Invert Out	et Devices
#1	Primary	279.08' 6.0'	Round 6" PVC
	2	L= ^	13.0' CPP, projecting, no headwall, Ke= 0.900
		Inle	t / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900

#2 Device 1
 #3 Discarded
 *** a provided and the second device of the second

Discarded OutFlow Max=0.09 cfs @ 9.85 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.61 cfs @ 12.31 hrs HW=279.99' (Free Discharge) 1=6" PVC (Inlet Controls 0.61 cfs @ 3.09 fps) 2=6" Maniford (Passes 0.61 cfs of 3.07 cfs potential flow) Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Summary for Pond I-2: South Ex. Units

Inflow Area = 0.663 ac,100.00% Impervious, Inflow Depth = 5.26" for 25-Year Storm event Inflow 3.70 cfs @ 12.07 hrs, Volume= 0.291 af = Outflow 0.57 cfs @ 12.54 hrs, Volume= = 0.291 af, Atten= 85%, Lag= 28.0 min Discarded = 0.22 cfs @ 10.65 hrs, Volume= 0.260 af 0.35 cfs @ 12.54 hrs, Volume= Primary = 0.031 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.55' @ 12.54 hrs Surf.Area= 4,722 sf Storage= 4,531 cf Flood Elev= 281.50' Surf.Area= 4,722 sf Storage= 5,355 cf

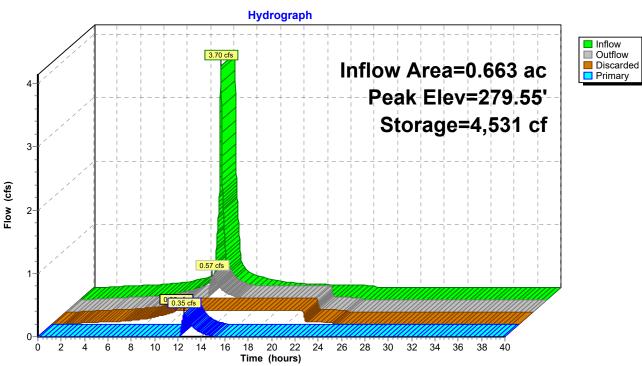
Plug-Flow detention time= 121.2 min calculated for 0.291 af (100% of inflow) Center-of-Mass det. time= 121.1 min (866.7 - 745.5)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
#2	278.25'	767 cf	162 Chambers in 6 Rows ADS_StormTech SC-310 +Cap x 52 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			52 Chambers in 4 Rows
#3	278.00'	1,634 cf	20.67'W x 170.75'L x 2.08'H Prismatoid for 6 rows of 27
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids
		5,355 cf	Total Available Storage
Device	Routing	Invert Out	let Devices
#1	Primary		' Round 6" PVC
	r minary		75.0' CPP, projecting, no headwall, Ke= 0.900
			t / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900
			0.010 PVC, smooth interior, Flow Area= 0.20 sf
			, ,

279.08' 6.0" Vert. 6" Manifold X 8.00 C= 0.600

#3Discarded278.00'**2.000 in/hr Exfiltration over Surface area**

Discarded OutFlow Max=0.22 cfs @ 10.65 hrs HW=278.04' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

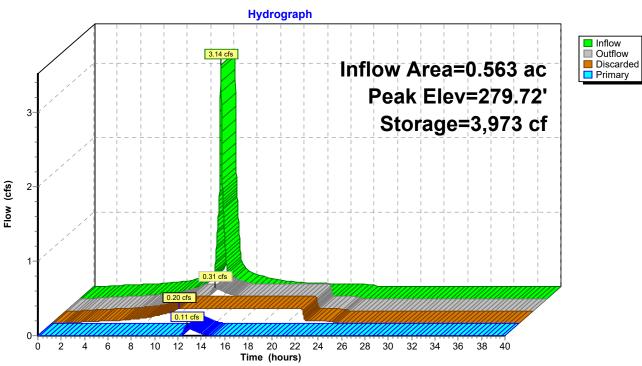

Primary OutFlow Max=0.35 cfs @ 12.54 hrs HW=279.55' (Free Discharge) **1=6" PVC** (Inlet Controls 0.35 cfs @ 1.85 fps)

1–2=6" Manifold (Passes 0.35 cfs of 3.59 cfs potential flow)

#2

Device 1

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC



Pond I-2: South Ex. Units

Summary for Pond SIG-1: New Storage

0.563 ac,100.00% Impervious, Inflow Depth = 5.26" for 25-Year Storm event Inflow Area = Inflow 3.14 cfs @ 12.07 hrs. Volume= 0.247 af = Outflow 0.31 cfs @ 12.78 hrs, Volume= = 0.247 af, Atten= 90%, Lag= 42.4 min Discarded = 0.20 cfs @ 10.88 hrs, Volume= 0.236 af Primary 0.11 cfs @ 12.78 hrs, Volume= 0.011 af Routed to Link DP-1 : Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 279.72' @ 12.78 hrs Surf.Area= 4,399 sf Storage= 3,973 cf Flood Elev= 281.50' Surf.Area= 4,399 sf Storage= 4,948 cf Plug-Flow detention time= 131.7 min calculated for 0.247 af (100% of inflow) Center-of-Mass det. time= 131.7 min (877.2 - 745.5) Volume Invert Avail.Storage Storage Description #1 278.67' 2.683 cf ADS StormTech SC-310 +Cap x 182 Inside #2 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 182 Chambers in 7 Rows #2 23.50'W x 187.20'L x 2.17'H Prismatoid for 7 rows of 26 278.17' 2.265 cf 9,546 cf Overall - 2,683 cf Embedded = 6,863 cf x 33.0% Voids 4,948 cf Total Available Storage Device Routing Invert Outlet Devices 6.0" Round 6" PVC #1 279.50' Primary L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 279.50' / 278.85' S= 0.0283 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf 6.0" Vert. 6" Manifold X 7.00 C= 0.600 #2 Device 1 279.50 Limited to weir flow at low heads #3 Discarded 278.17' 2.000 in/hr Exfiltration over Surface area **Discarded OutFlow** Max=0.20 cfs @ 10.88 hrs HW=278.20' (Free Discharge) -3=Exfiltration (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.11 cfs @ 12.78 hrs HW=279.72' (Free Discharge) 1=6" PVC (Inlet Controls 0.11 cfs @ 1.27 fps) 2=6" Manifold (Passes 0.11 cfs of 0.97 cfs potential flow) Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Pond SIG-1: New Storage

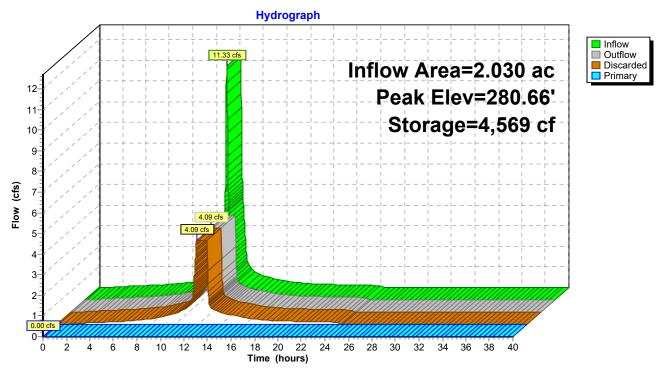
Summary for Pond TF:

Inflow Area = 2.030 ac,100.00% Impervious, Inflow Depth = 5.26" for 25-Year Storm event Inflow = 11.33 cfs @ 12.07 hrs, Volume= 0.890 af 4.09 cfs @ 11.88 hrs, Volume= Outflow = 0.890 af, Atten= 64%, Lag= 0.0 min 4.09 cfs @ 11.88 hrs, Volume= Discarded = 0.890 af Primary 0.00 cfs @ 0.00 hrs, Volume= 0.000 af = Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 280.66' @ 12.30 hrs Surf.Area= 88,424 sf Storage= 4,569 cf Flood Elev= 281.50' Surf.Area= 88,424 sf Storage= 29,180 cf

Plug-Flow detention time= 4.9 min calculated for 0.890 af (100% of inflow) Center-of-Mass det. time= 4.9 min (750.5 - 745.5)

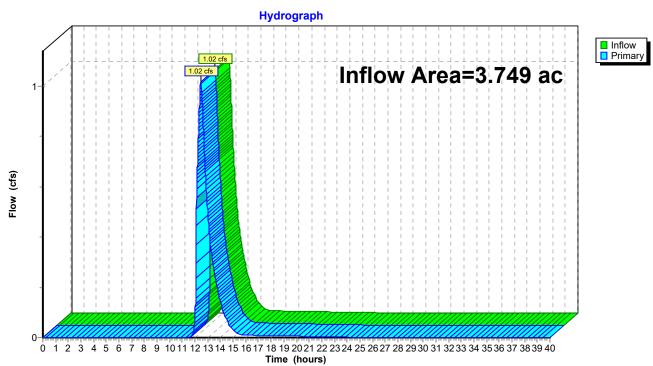
Volume	Invert	Avail	I.Storage	Storage Descrip	tion	
#1	280.50		29,180 cf	Custom Stage	Data (Prismatic	JListed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
280.5	1	<u>(34-11)</u> 88,424	0.0	0	0	
280.0		88,424 88,424	33.0	14,590	14,590	
281.5	50	88,424	33.0	14,590	29,180	
Device	Routing	Inv	vert Out	et Devices		
#1	Primary	278	L= 6 Inle	" Round Culver 7.0' CPP, squar / Outlet Invert= 2 0.013, Flow Area=	e edge headwall 78.00' / 275.00'	l, Ke= 0.500 S= 0.0448 '/' Cc= 0.900
#2	Device 1	281	.00' 3.0 '	Vert. Orifice (pa ted to weir flow at	nel drains) X 10	6.00 C= 0.600
#3	Discarded	280	.50' 2.00	0 in/hr Exfiltratio	on over Surface	erea
Discarded OutFlow Max=4.09 cfs @ 11.88 hrs HW=280.51' (Free Discharge)						


ed OutFlow Max=4.09 cfs @ 11.88 hrs HW=280.51' (Free Discharge) **1**-3=Exfiltration (Exfiltration Controls 4.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=280.50' (Free Discharge) **1=Culvert** (Passes 0.00 cfs of 5.35 cfs potential flow) **2=Orifice (panel drains)** (Controls 0.00 cfs)

21263_POST

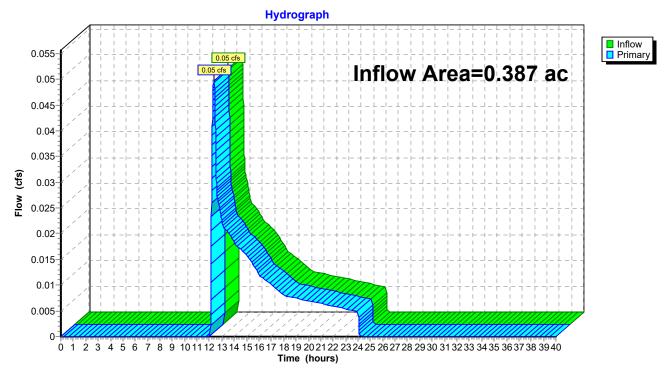
Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC


Pond TF:

Summary for Link DP-1:

Inflow Area	a =	3.749 ac, 97.17% Impervious, Inflow Depth = 0.30" for 25-Year Storm event
Inflow	=	1.02 cfs @ 12.47 hrs, Volume= 0.095 af
Primary	=	1.02 cfs @ 12.47 hrs, Volume= 0.095 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs


Link DP-1:

21263_POST	Type III 24-hr	25-Year Storm Rainfall=5.50"
Prepared by SMRT		Printed 2/28/2022
HydroCAD® 10.10-7a	n 00729 © 2021 HydroCAD Software Solutions LLC	Page 56

Summary for Link DP-2:

Inflow Area	a =	0.387 ac,	1.28% Impervious, Inflow D	epth = 0.36"	for 25-Year Storm event
Inflow	=	0.05 cfs @	12.35 hrs, Volume=	0.012 af	
Primary	=	0.05 cfs @	12.35 hrs, Volume=	0.012 af, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

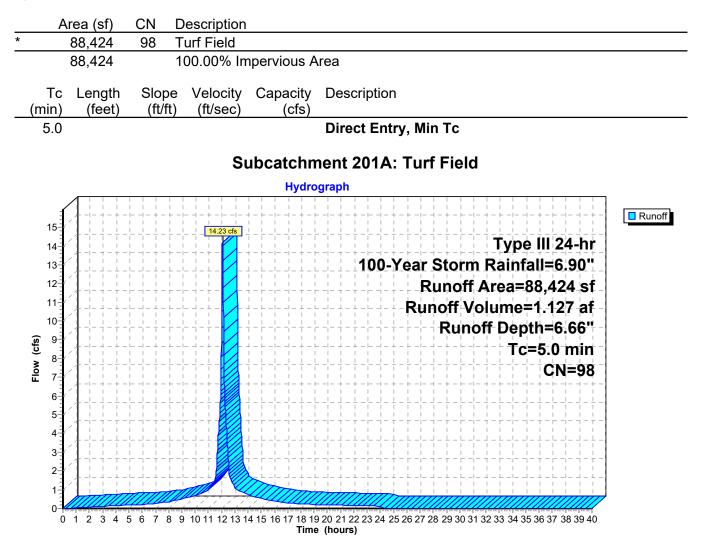
Link DP-2:

21263_POST

Prepared by SMRT

HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Time span=0.00-40.00 hrs, dt=0.01 hrs, 4001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


Subcatchment201A: Turf Field	Runoff Area=88,424 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=14.23 cfs 1.127 af
Subcatchment201B-1:	Runoff Area=15,166 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=2.44 cfs 0.193 af
Subcatchment201B-2:	Runoff Area=28,876 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=4.65 cfs 0.368 af
Subcatchment201B-3:	Runoff Area=24,513 sf 100.00% Impervious Runoff Depth=6.66" Tc=5.0 min CN=98 Runoff=3.95 cfs 0.312 af
Subcatchment201C:	Runoff Area=6,349 sf 27.28% Impervious Runoff Depth=1.97" Tc=5.0 min CN=54 Runoff=0.32 cfs 0.024 af
Subcatchment202A:	Runoff Area=16,840 sf 1.28% Impervious Runoff Depth=0.80" Tc=5.0 min CN=40 Runoff=0.20 cfs 0.026 af
Pond I-1: North Ex. Units Discarded=0.09	Peak Elev=303.01' Storage=2,061 cf Inflow=2.44 cfs 0.193 af cfs 0.124 af Primary=3.11 cfs 0.069 af Outflow=3.19 cfs 0.193 af
Pond I-2: South Ex. Units Discarded=0.22	Peak Elev=285.87' Storage=5,355 cf Inflow=4.65 cfs 0.368 af 2 cfs 0.289 af Primary=1.91 cfs 0.079 af Outflow=2.13 cfs 0.368 af
Pond SIG-1: New Storage Discarded=0.20	Peak Elev=280.24' Storage=4,805 cf Inflow=3.95 cfs 0.312 af o cfs 0.264 af Primary=0.52 cfs 0.049 af Outflow=0.73 cfs 0.312 af
Pond TF: Discarded=4.09	Peak Elev=280.76' Storage=7,653 cf Inflow=14.23 cfs 1.127 af o cfs 1.127 af Primary=0.00 cfs 0.000 af Outflow=4.09 cfs 1.127 af
Link DP-1:	Inflow=3.43 cfs 0.221 af Primary=3.43 cfs 0.221 af
Link DP-2:	Inflow=0.20 cfs 0.026 af Primary=0.20 cfs 0.026 af
Total Dupoff Aroa - 4.1	26 ac Bunoff Volume = 2 050 af Average Bunoff Denth = 5 05

Total Runoff Area = 4.136 ac Runoff Volume = 2.050 af Average Runoff Depth = 5.95" 11.79% Pervious = 0.488 ac 88.21% Impervious = 3.648 ac

Summary for Subcatchment 201A: Turf Field

Runoff = 14.23 cfs @ 12.07 hrs, Volume= Routed to Pond TF : 1.127 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

Summary for Subcatchment 201B-1:

Runoff = 2.44 cfs @ 12.07 hrs, Volume= Routed to Pond I-1 : North Ex. Units

0.193 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

Area (sf)	CN Description						
* 14,234	98 Track						
* 932	98 Concrete Sidewalk						
15,166	98 Weighted Average						
15,166	100.00% Impervious Area						
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
5.0	Direct Entry, Min Tc						
	Subcatchment 201B-1:						
	Hydrograph						
2	Type III 24-hr 100-Year Storm Rainfall=6.90" Runoff Area=15,166 sf Runoff Volume=0.193 af Runoff Depth=6.66" Tc=5.0 min CN=98						

Summary for Subcatchment 201B-2:

Runoff = 4.65 cfs @ 12.07 hrs, Volume= Routed to Pond I-2 : South Ex. Units 0.368 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

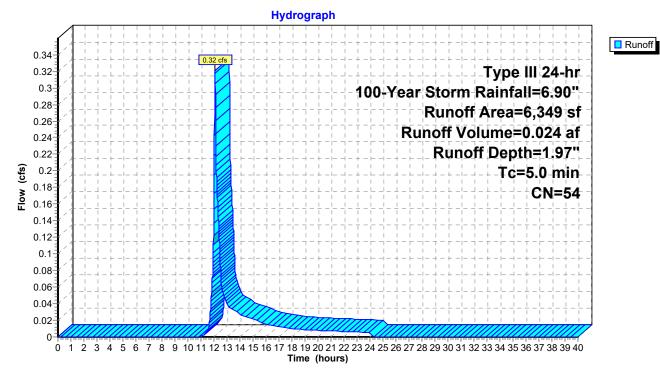
<u>م</u>	Area (sf) 26,786 2,090 28,876 28,876	98 T 98 C 98 V	Description Track Concrete S Veighted A 00.00% Im		Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Min Tc
				Subcat	tchment 201B-2:
5 4 2 2 2			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image Image <th< td=""><td>Type III 24-hr 100-Year Storm Rainfall=6.90" Runoff Area=28,876 sf Runoff Volume=0.368 af Runoff Depth=6.66" Tc=5.0 min CN=98</td></th<>	Type III 24-hr 100-Year Storm Rainfall=6.90" Runoff Area=28,876 sf Runoff Volume=0.368 af Runoff Depth=6.66" Tc=5.0 min CN=98
- - - 0- (5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)

Summary for Subcatchment 201B-3:

Runoff = 3.95 cfs @ 12.07 hrs, Volume= Routed to Pond SIG-1 : New Storage 0.312 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

*		rea (sf) 22,884 1,629 24,513 24,513	98 - 98 (98 \	Description Track Concrete S Weighted A 100.00% In	idewalk verage	Area
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry, Min Tc
					Subcat	tchment 201B-3:
					Hydro	ograph
	4			3.95 cfs 1 1 1 3.95 cfs 1 1 1 1 1 1 3.95 cfs 1 1 1 1 1 1 1		Type III 24-hr 100-Year Storm Rainfall=6.90" Runoff Area=24,513 sf Runoff Volume=0.312 af Runoff Depth=6.66" Tc=5.0 min CN=98
	1	1 2 3 4	5 6 7 8	9 10 11 12 13		9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 e (hours)


Summary for Subcatchment 201C:

Runoff = 0.32 cfs @ 12.08 hrs, Volume= Routed to Link DP-1 : 0.024 af, Depth= 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

	Are	ea (sf)	CN	Description						
*		864	98	Roof						
*		868	98	Concrete P	Concrete Pavement					
		477	30	Woods, Go	Woods, Good, HSG A					
		4,140	39	>75% Grass cover, Good, HSG A						
		6,349	54	Weighted Average						
		4,617		72.72% Pervious Area						
		1,732		27.28% Impervious Area						
<u>(n</u>	Tc nin)	Length (feet)	Slop (ft/f	•	Capacity (cfs)	Description				
	5.0					Direct Entry, Min Tc				

Subcatchment 201C:

Summary for Subcatchment 202A:

0.026 af, Depth= 0.80"

Runoff = 0.20 cfs @ 12.12 hrs, Volume= Routed to Link DP-2 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Storm Rainfall=6.90"

215 16,625 16,840 16,625 215 Length (feet)	39 > 40 V 9	/eighted A 8.72% Pei	s cover, Go	
16,840 16,625 215 Length	40 W 9 1 Slope	Veighted A 8.72% Per .28% Impe Velocity	verage vious Area ervious Area Capacity	a ea
16,625 215 Length	9 1 Slope	8.72% Per .28% Impe Velocity	vious Area ervious Area Capacity	a
215 Length	1 Slope	.28% Impe Velocity	ervious Are Capacity	a
Length	Slope	Velocity	Capacity	
				Description
				Direct Entry, Min Tc
			Subca	atchment 202A:
				ograph
	- - + - -		+ - +	
´				
				Type III 24-hr
´	- +- -			
			-	
				Runoff Area=16,840 sf
	-i			Runoff Depth=0.80"
				Tc=5.0 min
/ / / - + - + -	- +-+- -		-	CN=40
	- + - -			
´	$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$			
`	$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$			
/ -i- + - + - /	- - + - -			
	<u> </u>		, , , , , , , , , , , , , , , , , , ,	i _ j _ j _ j _ j _ j _ j

Summary for Pond I-1: North Ex. Units

0.124 af

0.069 af

[93] Warning: Storage range exceeded by 22.93'
[58] Hint: Peaked 21.51' above defined flood level
[88] Warning: Qout>Qin may require smaller dt or Finer Routing
[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=12)
Inflow Area = 0.348 ac,100.00% Impervious, Inflow Depth = 6.66" for 100-Year Storm event
Inflow = 2.44 cfs @ 12.07 hrs, Volume= 0.193 af
Outflow = 3.19 cfs @ 12.08 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.7 min

 Outflow
 =
 3.19 cfs @
 12.08 hrs, Volume=

 Discarded
 =
 0.09 cfs @
 9.25 hrs, Volume=

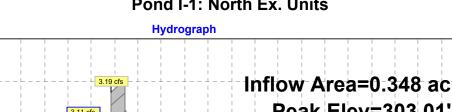
 Primary
 =
 3.11 cfs @
 12.08 hrs, Volume=

 Routed to Link DP-1 :

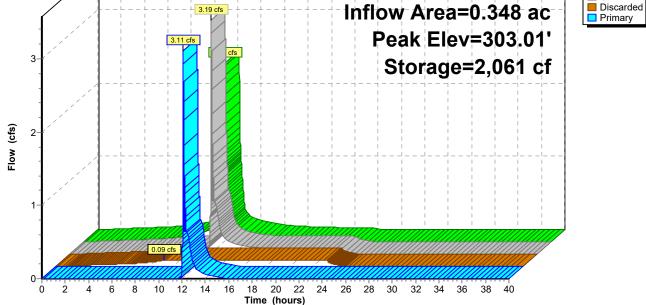
Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 303.01'@ 12.08 hrs Surf.Area= 1,838 sf Storage= 2,061 cf Flood Elev= 281.50' Surf.Area= 1,838 sf Storage= 2,061 cf

Plug-Flow detention time= 95.2 min calculated for 0.193 af (100% of inflow) Center-of-Mass det. time= 95.2 min (837.4 - 742.2)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	1,106 cf	ADS_StormTech SC-310 +Cap x 75 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
#0	070 051	00 of	75 Chambers in 3 Rows
#2	278.25'	88 cf	ADS_StormTech SC-310 +Cap x 6 Inside #4 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0° W x 16.0 H x 7.56'L with 0.44' Overlap
			6 Chambers in 2 Rows
#3	278.00'	848 cf	11.17'W x 158.25'L x 2.08'H Prismatoid for 3 rows of 25
110	210100	01001	3,677 cf Overall - 1,106 cf Embedded = 2,571 cf x 33.0% Voids
#4	278.00'	19 cf	4.83'W x 14.50'L x 2.08'H Prismatoid for 2 rows of 3
			146 cf Overall - 88 cf Embedded = 57 cf x 33.0% Voids
		2,061 cf	Total Available Storage


Device	Routing	Invert	Outlet Devices
#1	Primary	279.08'	6.0" Round 6" PVC
			L= 113.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0361 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Maniford X 4.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 9.25 hrs HW=278.14' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.09 cfs)


Primary OutFlow Max=2.96 cfs @ 12.08 hrs HW=300.80' (Free Discharge) 1=6" PVC (Barrel Controls 2.96 cfs @ 15.05 fps) 2=6" Maniford (Passes 2.96 cfs of 17.52 cfs potential flow)

InflowOutflow

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Pond I-1: North Ex. Units

Summary for Pond I-2: South Ex. Units

[93] Warning: Storage range exceeded by 5.79'

[58] Hint: Peaked 4.37' above defined flood level

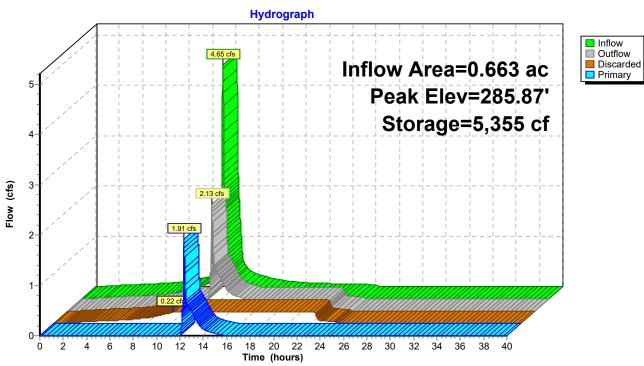
[85] Warning: Oscillations may require smaller dt or Finer Routing (severity=7)

Inflow Area =	0.663 ac,100.00% Impervious, Inflow	Depth = 6.66" for 100-Year Storm event
Inflow =	4.65 cfs @ 12.07 hrs, Volume=	0.368 af
Outflow =	2.13 cfs @ 12.31 hrs, Volume=	0.368 af, Atten= 54%, Lag= 14.4 min
Discarded =	0.22 cfs @ 10.15 hrs, Volume=	0.289 af
Primary =	1.91 cfs @ 12.31 hrs, Volume=	0.079 af
Routed to Link	DP-1 :	

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 285.87' @ 12.31 hrs Surf.Area= 4,722 sf Storage= 5,355 cf Flood Elev= 281.50' Surf.Area= 4,722 sf Storage= 5,355 cf

Plug-Flow detention time= 114.6 min calculated for 0.368 af (100% of inflow) Center-of-Mass det. time= 114.6 min (856.8 - 742.2)

Volume	Invert	Avail.Storage	Storage Description
#1	278.25'	2,388 cf	ADS_StormTech SC-310 +Cap x 162 Inside #3
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			162 Chambers in 6 Rows
#2	278.25'	767 cf	ADS_StormTech SC-310 +Cap x 52 Inside #4
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			52 Chambers in 4 Rows
#3	278.00'	1,634 cf	20.67'W x 170.75'L x 2.08'H Prismatoid for 6 rows of 27
			7,341 cf Overall - 2,388 cf Embedded = 4,953 cf x 33.0% Voids
#4	278.00'	566 cf	14.33'W x 83.25'L x 2.08'H Prismatoid for 4 rows of 13
			2,481 cf Overall - 767 cf Embedded = 1,715 cf x 33.0% Voids
		5,355 cf	Total Available Storage
			-


Device	Routing	Invert	Outlet Devices
#1	Primary	279.08'	6.0" Round 6" PVC
			L= 75.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 279.08' / 275.00' S= 0.0544 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	279.08'	6.0" Vert. 6" Manifold X 8.00 C= 0.600
			Limited to weir flow at low heads
#3	Discarded	278.00'	2.000 in/hr Exfiltration over Surface area

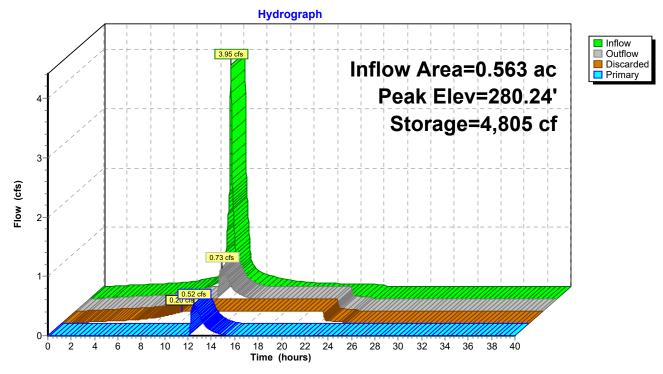
Discarded OutFlow Max=0.22 cfs @ 10.15 hrs HW=278.07' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=1.89 cfs @ 12.31 hrs HW=285.76' (Free Discharge) **1=6" PVC** (Inlet Controls 1.89 cfs @ 9.64 fps)

2=6" Manifold (Passes 1.89 cfs of 19.18 cfs potential flow)

Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

Pond I-2: South Ex. Units


Summary for Pond SIG-1: New Storage

0.563 ac,100.00% Impervious, Inflow Depth = 6.66" for 100-Year Storm event Inflow Area = Inflow 3.95 cfs @ 12.07 hrs. Volume= 0.312 af = Outflow 0.73 cfs @ 12.50 hrs, Volume= = 0.312 af, Atten= 82%, Lag= 25.9 min Discarded = 0.20 cfs @ 10.31 hrs, Volume= 0.264 af Primary 0.52 cfs @ 12.50 hrs, Volume= 0.049 af Routed to Link DP-1 : Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 280.24' @ 12.50 hrs Surf.Area= 4,399 sf Storage= 4,805 cf Flood Elev= 281.50' Surf.Area= 4,399 sf Storage= 4,948 cf Plug-Flow detention time= 124.0 min calculated for 0.312 af (100% of inflow) Center-of-Mass det. time= 124.0 min (866.2 - 742.2) Volume Invert Avail.Storage Storage Description #1 278.67' 2.683 cf ADS StormTech SC-310 +Cap x 182 Inside #2 Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap 182 Chambers in 7 Rows #2 23.50'W x 187.20'L x 2.17'H Prismatoid for 7 rows of 26 278.17' 2.265 cf 9,546 cf Overall - 2,683 cf Embedded = 6,863 cf x 33.0% Voids 4,948 cf Total Available Storage Device Routing Invert Outlet Devices 6.0" Round 6" PVC #1 279.50' Primary L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 279.50' / 278.85' S= 0.0283 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf 6.0" Vert. 6" Manifold X 7.00 C= 0.600 #2 Device 1 279.50 Limited to weir flow at low heads #3 Discarded 278.17' 2.000 in/hr Exfiltration over Surface area **Discarded OutFlow** Max=0.20 cfs @ 10.31 hrs HW=278.20' (Free Discharge)

3=Exfiltration (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.52 cfs @ 12.50 hrs HW=280.24' (Free Discharge) 1=6" PVC (Inlet Controls 0.52 cfs @ 2.66 fps) 2=6" Manifold (Passes 0.52 cfs of 4.64 cfs potential flow) HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC

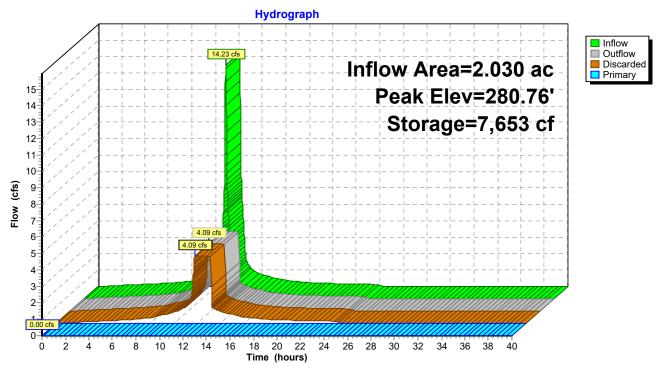
Summary for Pond TF:

Inflow Area = 2.030 ac,100.00% Impervious, Inflow Depth = 6.66" for 100-Year Storm event Inflow = 14.23 cfs @ 12.07 hrs, Volume= 1.127 af 4.09 cfs @ 11.80 hrs, Volume= Outflow = 1.127 af, Atten= 71%, Lag= 0.0 min 4.09 cfs @ 11.80 hrs, Volume= Discarded = 1.127 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link DP-1 :

Routing by Stor-Ind method, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs Peak Elev= 280.76' @ 12.38 hrs Surf.Area= 88,424 sf Storage= 7,653 cf Flood Elev= 281.50' Surf.Area= 88,424 sf Storage= 29,180 cf

Plug-Flow detention time= 8.3 min calculated for 1.127 af (100% of inflow) Center-of-Mass det. time= 8.3 min (750.5 - 742.2)

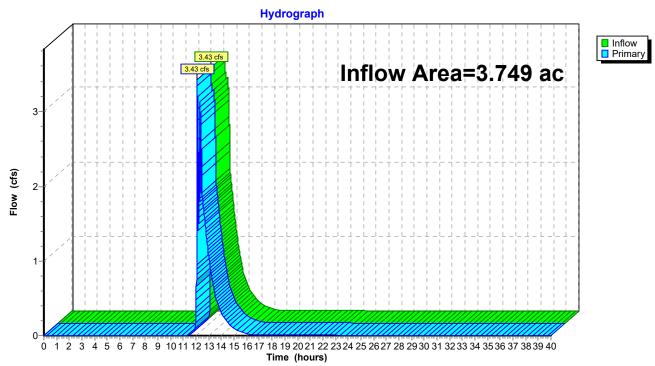
Volume	Inver	t Ava	il.Storag	e Storage Descr	iption	
#1	280.50)'	29,180 0	of Custom Stage	e Data (Prismatio	c)Listed below (Recalc)
Elevatio		Surf.Area	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
(fee	1	<u>(sq-ft)</u>		1 1		
280.5 281.0		88,424 88,424	0.0 33.0	0 14,590	0 14,590	
281.5		88,424 88,424	33.0	14,590	29,180	
Device	Routing	Ir	nvert O	utlet Devices		
#1	Primary	278	3.00' 1 2	2.0" Round Culve	ert	
			Ŀ	= 67.0' CPP, squa	are edge headwal	II, Ke= 0.500
			In	let / Outlet Invert=	278.00' / 275.00'	S= 0.0448 '/' Cc= 0.900
			n	= 0.013, Flow Area	a= 0.79 sf	
#2	Device 1	28 <i>°</i>	1.00' 3 .	.0" Vert. Orifice (p	oanel drains) X 1	6.00 C= 0.600
			Li	mited to weir flow	at low heads	
#3	Discarded	280	0.50' 2 .	.000 in/hr Exfiltrat	tion over Surface	e area
Discarded OutFlow Max=4.09 cfs @ 11.80 hrs HW=280.51' (Free Discharge)						


ed OutFlow Max=4.09 cfs @ 11.80 hrs HW=280.51' (Free Discharge) **1**-3=Exfiltration (Exfiltration Controls 4.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=280.50' (Free Discharge) **1=Culvert** (Passes 0.00 cfs of 5.35 cfs potential flow) **2=Orifice (panel drains)** (Controls 0.00 cfs)

21263_POST

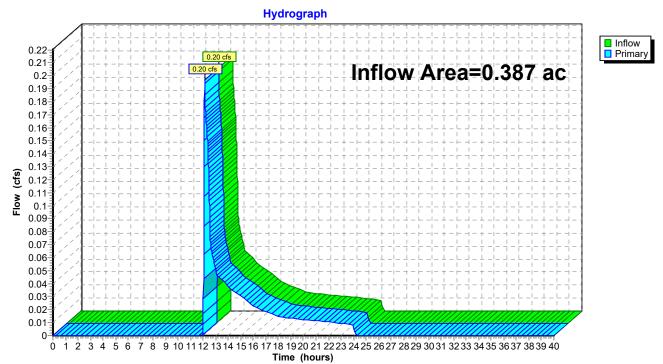
Prepared by SMRT HydroCAD® 10.10-7a s/n 00729 © 2021 HydroCAD Software Solutions LLC



Summary for Link DP-1:

Inflow Are	a =	3.749 ac, 97.17% Impervious, Inflow Depth = 0.71" for 100-Year Storm event
Inflow	=	3.43 cfs @ 12.08 hrs, Volume= 0.221 af
Primary	=	3.43 cfs @ 12.08 hrs, Volume= 0.221 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs



Link DP-1:

Summary for Link DP-2:

Inflow Area	a =	0.387 ac,	1.28% Impervious, Inflow Depth = 0.	80" for 100-Year Storm event
Inflow	=	0.20 cfs @	12.12 hrs, Volume= 0.026 af	
Primary	=	0.20 cfs @	12.12 hrs, Volume= 0.026 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-40.00 hrs, dt= 0.01 hrs

Link DP-2:

STORMWATER FACILITIES OPERATION, INSPECTION AND MAINTENANCE PLAN

Westminster School- Track & Field Renovations Simsbury, Connecticut

During construction activities, the maintenance of all stormwater measures will be the direct responsibility of the Contractor undertaking the work. All work shall conform to the terms and conditions of all relevant local, State and/or Federal permits. After acceptance by the Owner, the maintenance of all stormwater management facilities, the establishment of any contract services required to implement the program, and the keeping of records and maintenance log book will be the responsibility of Westminster School. Notwithstanding any other schedule noted below, general inspections should be conducted by facilities staff monthly during wet weather conditions from March to November.

Drainage Pipes and Culverts

Culverts and piped drainage systems shall be inspected on an annual basis to remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit; and to repair any erosion damage at the pipe inlet and outlet. Sediment should be removed when its level exceeds 20% of the pipe diameter. This may be accomplished by hydraulic flushing or any mechanical means. However, care should be taken to contain the sediment at the pipe outlet, and not flush the sediments into the bioretention area (in the main entrance parking lot) as this will reduce the ponds capacity and ability to filter/infiltrate runoff, and will hasten the time when the pond must be cleaned/rehabilitated.

Inlet and Outlet Grates

Inlet and outlet grates are intended to trap and control floatables and debris within the stormwater system. The grates should be inspected on a quarterly basis, and after large storm events for build up of debris and other potentially detrimental material. Periodic maintenance of these features will be required to keep grates clear and prevent damage to either the grate itself or the attached structure.

Yard Drains / Dry Wells

Inspect drainage structures at least four times a year, and at the end of foliage and snow removal seasons. Remove sediments from catch basin at least four times per year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin. (Removal of sediments shall occur a minimum of once per year). Clean out must include the removal and legal disposal of accumulated sediments and debris at the bottom of the basin, at any inlet grates, at any inflow channels to the basin, and at any pipes between basins. If the basin outlet is designed to trap floatable materials, then remove the floating debris and any floating oils (using oil-absorptive pads).

Subsurface Infiltration Gallery

Owner shall follow the manufacturer's recommended schedule for inspection and maintenance of the infiltration chamber units.

Track Trench Drain

Owner shall inspect the trench drain at least twice per the spring and fall seasons. Inline catch basin track racks should be inspected and debris removed and disposed in a legal manner

Synthetic Turf Field & Track

Owner shall follow the manufacturer's recommended schedule for inspection and maintenance of the infiltration chamber units.

Owner:	Party responsible for Operations and Management:		
Owners Name:	Name:		
Owners Signature:	Address:		
Date:			
	Phone:		

The Town of Simsbury reserves the right to inspect the stormwater management system at reasonable times and in a reasonable manner.

STORMWATER FACILITIES OPERATION, INSPECTION AND MAINTENANCE INSPECTION REPORT

GENERAL Project: Westminster School – Track & Field Renovation

Simsbury, Connecticut

Inspector:

Qualifications:

Date/Time:

□ Storm Event-Storm start date & rainfall (inches):

Weather conditions (at time of inspection):

General Observations:

Outstanding Issues from Previous Report:

BMP's	Functional?	Condition?	Notes
Drainage Pipes and Culverts:	🗆 Yes 🗆 No		
Inlet and Outlet Grates:	🗆 Yes 🗆 No		
Yard Drains / Drywells:	🗆 Yes 🗆 No		
Subsurface Infiltration Gallery:	🗆 Yes 🗆 No		
Track Trench Drain:	🗆 Yes 🗆 No		

Other:

HOUSEKEEPING	Observed?	Condition?	Notes
Contaminants/Chemicals:	□ Yes □ No		
Dumpster(s)/Litter Control:	□ Yes □ No		
Sanitary Facilities:	□ Yes □ No		
Vehicle Maintenance:	□ Yes □ No		

Other:

CORRECTIVE ACTIONS, FOLLOW UP, SCHEDULE, RESPONSIBLE PARTIES AND GENERAL NOTES

Inspector's Name and Signature: _____