Proposed Commercial Development

1263 Hopmeadow Street Simsbury, CT

PREPARED FOR

Prospect Enterprises, LLC 231 Farmington Avenue Farmington, CT 06032

PREPARED BY

100 Great Meadow Road Suite 200 Wethersfield, Connecticut 860.807.4300

May 2023 REV August 2023

Table of Contents

Table	e of Contents	i
Proje	ect Summary	1
	Project Description Site Description	1 1
Exist	ting Drainage Conditions	4
	Hydrologic Information	4
Prop	oosed Drainage Conditions	6
	Hydrologic Information Water Quantity and Quality Control	7 8
Hydr	rologic/Hydraulic Analysis	11
	Hydrologic Analysis Hydraulic Analysis Floodplain Information / Analysis	
List	of Figures	
	Figure 1: Site Location Man	

Figure 1: Site Location Map Figure 2: Existing Drainage Areas Figure 3: Proposed Drainage Areas

List of Tables

Table 1: Existing Conditions Hydrologic Data Table 2: Proposed Conditions Hydrologic Data Table 3: Peak Discharge Rates

Appendices

Appendix A Town of Simsbury Site Planning and Design Criteria Checklist
Appendix B NRCS Soil Survey Information FEMA Floodway Map
Appendix C Water Quality Unit Sizing Recharge Calculations

StormCAD: Schemat	ic
StormCAD: Conduit Table (25-year storm even	t)
StormCAD: Structure Tabl	е

Appendix D

.....Erosion and Sedimentation Control Measures

Appendix E

......Long Term Stormwater and Operation and Maintenance Measures

Appendix F

Project Summary

Project Description

The Applicant, Prospect Enterprises LLC, is proposing to construct a commercial development including a 2,400 restaurant with drive thru, a 2,325 restaurant with drive thru, an 11,600sf retail building, and drive up ATM, along with all associated utilities, drive aisles, parking area, stormwater management facilities and landscaping to support this use.

Site Description

The \pm 4.5-acre Project Area (Site) is located at 1263 Hopmeadow Street and consists of four parcels (Assessor's Tax ID 105-403-017, -017R, -018, -020-1) in Simsbury, Connecticut (Figure 1). The Site is currently zoned B-2 General Business and is within Level A Aquifer Protection Zone.

Under existing conditions, the site, formerly a car dealership, contains vacant buildings surrounded by predominantly broken pavement surface. The site is primarily impervious (80%) surrounded by commercial developments to both the north (Big Y Supermarket) and south (Dunkin'). There is a vacant broken lot to the south (west of Dunkin') which borders the southern portion of the western half of the site. A residential apartment complex borders the site to the west which is buffered by mature trees. Hopmeadow Street (Route 202) borders the site to the East.

There is a grade change across the existing site, ranging from elevation 196 at the rear of the site, to elevation 175 at the street. Under existing conditions, the majority of the untreated stormwater runoff from the site flows overland into the Hopmeadow Street right of way.

From available data, the NRCS surface soils on the Site were classified as hydraulic group ratings of "D", indicating soils having a low infiltration rate when thoroughly wet. See Appendix B for NRCS Classification documentation. However, according to the report titled "Off Site Storm Drainage Analysis" prepared for the Big Y (neighboring property to the north), prepared by F.A. Hesketh & Associates, Inc., revised through April 26, 2013, the underlying soils are made up of sand and gravel which are highly permeable. In addition, a geotechnical

report prepared by GEI dated April 22, 2021 that collected test pit data from the rear portion of the parcel classified the soils as sand to sand with gravel and silt to silty sand. GEI prepared an updated field investigation on June 28, 2023 and July 6, 2023 in which field measurements for underlying soils were over 20in/hr in most areas. Since these documented sources identify the on-site soils as highly permeable (sandy), it would be justified to use a type "A" rating in the hydrologic analysis. To be conservative, for modeling purposes, the soil types were selected to be a type "B".

The project was designed to incorporate aspects of the Simsbury Stormwater Design Guidelines and the Connecticut Stormwater Quality Manual. Low impact development stormwater management techniques used will focus on decentralizing stormwater management areas and incorporate smaller stormwater management techniques to reduce peak runoff rates, maximize groundwater recharge and treatment for water quality. Stormwater quantity and quality measures within the site have been designed in many cases to meet the adjusted performance standard of 110% as required in Table 1.1 "Other Zones" of the Simsbury Stormwater Management Guidelines dated September 28, 2011 (exceptions stated herein).

Figure 1: Site Locus Map

Study Location Map Commercial Development Figure 1

Simsbury, CT

2

Existing Drainage Conditions

Under existing conditions, untreated stormwater runoff from the majority of the site flows overland towards the east and to the closed drainage system in Hopmeadow Street. The site generally slopes from the west to the east, from a peak elevation of 196 at the western property line, down to elevation 175 at the street line. The site is tiered with the lower eastern portion of the site at approximate elevation 177 and the upper western portion at elevation 195 with a steep central drive connecting the two tiers.

Hydrologic Information

For the existing conditions hydrologic analysis, the site was considered one large drainage area discharging to 1 design point, where peak discharge rates were evaluated (see Figure 2).

Drainage Area 1 - This ±5-acre area comprises the site area along with the surrounding area that discharges across the site. This area consists mainly of impervious cover with untreated stormwater flowing towards the eastern property line where it is captured by the catch basins in Hopmeadow Street (Design Point DP-1).

Table 1 summarizes the key hydrologic parameters used in the existing conditions analysis.

Drainage Area	Discharge Location	Design Point	Area (acres)	Curve Number	Time of Concentration (min)
1	Hopmeadow Street	DP-1	5.0	88	23.8

Table 1Existing Conditions Hydrologic Data

4

Figure 2: Existing Drainage Areas

SCS SOIL CLASSIFICATIONS

Existing Drainage Conditions

Figure 2

Commercial Development 1263 Hopmeadow St, Simsbury CT May 26, 2023

3

Proposed Drainage Conditions

Under proposed conditions, the Site has been designed to mimic existing conditions topography and drainage patterns. Stormwater best management practices (BMPs) and Low Impact Development (LID) are incorporated to the maximum extent practicable.

As shown on the Layout and Materials Site Plan, the site will consist of approximately 60% impervious surface.

Under proposed conditions, stormwater runoff from the majority of the site will be collected by deep sump hooded catch basins and conveyed through a hydrodynamic water quality unit providing pretreatment prior to discharging to the closed drainage system in Hopmeadow Street. An above ground infiltration basin at the southeast corner of the site will collect runoff from the southern portion of the property along with the roof runoff from the southern building. The infiltration basin as designed will infiltrate up to the 10-year storm event. The remaining two proposed buildings will direct their roof runoff to separate subsurface infiltration systems designed to infiltrate the 2-year storm event prior to connecting to the on-site closed drainage system.

Per the Simsbury Stormwater Guidelines, the site has been designed to meet water quality recharge volume requirements for 50% of the post development effective impervious area (see Appendix C for calculations).

Recharge Per Guidelines	Recharge Provided
1,855 c.f.	1,894 c.f.

Hydrologic Information

For the proposed conditions hydrologic analysis, the site was divided into three (3) drainage areas that drain to one design point as shown in the proposed conditions evaluation (see Figure 3).

Drainage Area 1 This drainage area consist of the majority of the site. Stormwater runoff is collected by catch basins with 4' sumps and piped through the closed drainage system to a hydrodynamic water quality unit prior to being discharged to the state closed drainage system in Hopmeadow Street (Design Point DP-1).

Drainage Area 2 This drainage area consists primarily of the pervious strip along the southern property line. Area from the southern adjacent property along with the roof runoff from the adjacent 2,400sf restaurant also contributes to this drainage area. Runoff from these portions of the site drain to an infiltration basin designed to infiltrate up to the 10-year storm event. Overflow is captured by a catch basin and outlets to the on-site closed drainage system prior to discharging to the state closed drainage system in Hopmeadow Street (Design Point DP-1). The outlet elevation was set using the following parameters: ensuring the 2-year storm event would fully infiltrate, minimizing depth of the basin and attempting to ensure as close to 1' of freeboard as possible at the 100-year storm event.

Drainage Area 3 This area consists of the roof for the retail building. Roof runoff is collected by roof drains connected to an underground header pipe that disperses to an underground stormwater infiltration system (StormTech STC-740) designed to infiltrate up to the 2-year storm event. Stormwater that does not infiltrate is piped to the on-site closed drainage system that outlets to the closed drainage system in Hopmeadow Street (Design Point DP-1).

Drainage Area 4 This area consists of the roof for the northern restaurant building. Similar to Drainage Area 3, roof runoff is collected by roof drains connected to an underground header pipe that disperses to an underground stormwater infiltration system (StormTech STC-310) designed to infiltrate up to the 2-year storm event. Stormwater that does not infiltrate back is piped to the on-site closed drainage system that outlets to the closed drainage system in Hopmeadow Street (Design Point DP-1).

Table 2 summarizes the key hydrologic parameters for each drainage area used in the proposed conditions analysis.

Drainage Area	Discharge Location	Design Point	Area (acres)	Curve Number	Time of Concentration (min)
1	Hopmeadow Street	DP-1	4.14	83	18.1
2	Hopmeadow Street	DP-1	0.41	61	5
2A	Hopmeadow Street	DP-1	0.10	98	5
3	Hopmeadow Street	DP-1	0.27	98	5
4	Hopmeadow Street	DP-1	0.05	98	5

Table 2 Proposed Conditions Hydrologic Data

The drainage system has been designed with a treatment train including hooded catch basins with 4' sumps, hydrodynamic water quality units, infiltration systems, and an infiltration basin. The proposed BMPs are consistent with those outlined in the Simsbury Stormwater BMP Selection Matrix outlined in Appendix C.

Details of the stormwater water management system features are as follows:

Water Quantity and Quality Control

Water quantity and quality control measures are outlined below. See Appendix E for details of the ongoing Stormwater Management System Long Term Operation and Maintenance Plan.

Source Control

A comprehensive source control program will be implemented at the site, which includes regular pavement sweeping, catch basin cleaning, and enclosure and maintenance of all dumpsters, compactors, and loading areas as well as trash and sediment removal from all LID stormwater features. Further discussion of the site maintenance is included in the Stormwater Management Long Term Operation and Maintenance Plan included in Appendix E.

Catch Basins with Sumps and Oil/debris Traps

Catch basins at the site are to be constructed with sumps (minimum 4-feet) and oil/debris traps (where applicable) to prevent the discharge of sediments and floating contaminants.

Water Quality Units

The hydrodynamic water quality unit will be a manhole-type structure which relies on flowing stormwater to swirl within the units, allowing sediment to settle by gravity efficiently removing total suspended solids (TSS) and freeing oil from the stormwater run-off. The units prevent the resuspension of settled material and allow for safe and easy removal of collected material. All stormwater that enters the closed drainage system will pass through a water quality unit before being directed to the primary treatment component.

Subsurface Infiltration Systems

Two subsurface infiltration systems are independently designed to infiltrate runoff from the retail building (StormTech STC-740) and northern restaurant building (StormTech STC-310). The design of the chambers includes a permeable bottom that allows for exfiltration of the 2-year storm event prior to entering the closed drainage system.

Infiltration Basin

An above ground infiltration basin is located at the southeastern corner of the site along Hopmeadow Street. The basin is designed to infiltrate stormwater runoff up to the 10-year storm event. Overflow from the surface basin will flow into a catch basin and outlet to the closed on-site drainage system. Details of the pond are outlined below:

Top of Pond Bottom of Po	176.3 174.0	
Storm Event		
	Elevation	
2 year 174.4		
10 year	175.1	
25 year	175.3	
50 year 175.3		
100 year	175.3	

Figure 3: Proposed Drainage Areas

WINDSOR LOAMY SAND,0 TO 3 SLOPES, HSG A

HINCKLEY LOAMY SAND,0 TO 3 PERCENT SLOPES, HSG A

UDORTHENTS, URBAN LAND COMPLEX, HSG B

URBAN LAND, HSG D

Proposed Drainage Conditions

Figure 3

Commercial Development 1263 Hopmeadow St, Simsbury CT May 26, 2023 Aug 23, 2023 REV

4

Hydrologic/Hydraulic Analysis

Hydrologic Analysis

The rainfall-runoff was evaluated for the 2, 10, 25, 50 and 100-year storm recurrence. Rainfall volumes used for this analysis were based on the National Weather Service NOAA Hydrometeorological Design Studies Center, Type III, 24-hour storm event for the town of Simsbury, CT. Rainfall volumes were 3.28, 5.28, 6.53, 7.44, 8.45 respectively. Runoff coefficients for the pre- and post- development conditions, as shown in the tables below were determined using NRCS Technical Release 55 (TR-55) methodology as provided in the HydroCAD reports found in Appendix F.

Peak rates have been reduced for all required storms (2, 10, 25, 50, 100-year storm events). In addition, the 2-, 10-, 25-year design storm events for the site have been reduced by an additional 10% as required in Table 1.1 "Other Zones" of the Simsbury Stormwater Management Guidelines dated September 28, 2011.

Table 3 presents a summary of the existing and proposed conditions peak discharge rates.

Table 3 Peak Discharge Rates (cfs*)

Design Point	2-year	10-year	25-year	50-year	100-year
Design Point 1: Hopmeadow Street					
Existing	7.5	14.1	18.1	21.1	24.4
Proposed	5.5	12.0	16.3	19.7	23.1

Expressed in cubic feet per second

Hydraulic Analysis

The closed drainage system was designed for the 25-year storm event, in accordance with the Town of Simsbury Stormwater Management Guidelines.

Drainage pipes were sized using Manning's Equation for full-flow capacity and the Rational Method. Additionally, the performance of the system was analyzed using StormCAD, a HEC-22 based program. Pipe sizing calculations are included in Appendix C of this report.

Floodplain Information / Analysis

The site is located within FEMA Flood Zone X area of minimal flood hazard as shown on the FEMA Floodway Map, Panel No. 09003C0193F dated September 26, 2008 (included in Appendix B).

Appendix A:

Town of Simsbury Site Planning and Design Criteria Checklist Conformance with the following criteria shall be initialed in the spaces provided by a registered Connecticut Professional Engineer. If site conditions partially or completely prevent implementation of any specific criteria, documentation demonstrating technical infeasibility must be provided.

				Technically	Not
-	Item #	Description	Verified	Infeasible	Appilcable
	1.1	Development avoids sensitive natural resource areas and their buffers, including but not limited to: designated natural resource protection areas, riverfront buffers, steep slopes, wildlife habitats, and forests.	~		
Watershed	1.2	Development and redevelopment is within Simsbury Center or other areas designated to be compact and walkable, including developments utilizing the Simsbury Center Code, Planned Area Development Designation, or other cluster development designs, or other compact and walkable areas as determined by Town Staff in order to concentrate development and minimize total impervious area in the watershed.			~
	1.3	Public open space and recreation areas are designed as Special Detention Areas per Stormwater Article Section 1.2C to provide both public use and neighborhood-scale stormwater mitigation.			~
	1.4	Neighborhood planning within Simsbury Center follows the general principles established in the Simsbury Center Watershed Planning and Design Framework.			~
ighborhood	2.1	An existing conditions plan is provided documenting sensitive natural resources including existing wetlands, streams, ponds, vernal pools, flood zones, soil types and infiltration rates, steep slopes, treelines and trees 12" caliper and greater, septic tanks and fields, and natural topography.	~		
Ne	2.2	Using the existing conditions plan as a guide, development is located to maximize preservation of contiguous natural sensitive areas.	\checkmark		

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
Neighborhood (continued)	2.3	Using the existing conditions plan as a guide, development and stormwater management systems are located such that centralized volume mitigation and flood control such as detention/retention basins, if required, is located towards the edges of compact development areas or in adjacent open space.	\checkmark		
	2.4	Community open space is sited in areas of well- draining soils, located in coordination with topography to receive stormwater runoff from new development, and designed as a Special Detention Area per Section 1.1.2C to provide neighborhood-scale stormwater infiltration and flood control.			~
	2.5	Existing stands of mature trees are incorporated into the neighborhood and site design and preserved to the maximum extent practicable. Tree protection provisions are submitted as required by Landscaping Section 9.02.	\checkmark		
	2.6	Development is alley-loaded and/or incorporates parking lots sited behind buildings.	\checkmark		
	2.7	The neighborhood parking approach incorporates shared parking strategies, on-street parking, and centralized structured parking to minimize new impervious area.			~
	3.1	New thoroughfares and retrofit of existing thoroughfares meet Section 1.2B Water Quality and Quantity requirements.	(some)		
its	3.2	Thoroughfare and driveway pavement widths are the minimum required to accommodate public safety and emergency access.	\checkmark		
Green Stree	3.3	Rear lanes, alleys, emergency access lanes, on- street parking spaces, sidewalks, pedestrian and multi-use paths, and residential driveways are constructed of permeable materials using a section appropriate for structural and drainage requirements. In areas of poorly draining soils the permeable design may still provide water quality treatment as a "flow-through" condition with an underdrain.			~

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
		Street tree design incorporates stormwater			11
		management practices such as tree box filters to			
	3.4	filter and infiltrate stormwater runoff from			
		adiacent impervious areas.			¥
		Street trees are provided with adequate soil			
		volume and structural soil design to support long-			•
	3.5	term root growth and tree canopy without			\checkmark
		excessive impact to utilities or sidewalks.			
		X			
		Soil testing completed by a Certified Soil Scientist			
		is enclosed, and development is planned such that			
	4.1	new impervious surfaces are located on less	—		
		permeable soils, maximizing preservation of			
		undisturbed well-draining soils.			
	4.0	Infiltration BMPs are located in areas of well-	1		
	4.2	draining soils.	\checkmark		
		Building roof downspouts discharge runoff to			
	4.3	vegetated areas. Credit for Self-Treating and/or			
		Self-Retaining Areas may be applied per the			
		requirements of Section 1.1.2B.			
		Runoff from impervious paved surfaces is directed			
		towards vegetated areas for natural filtration			
gn	1 1	and/or infiltration before conveyance offsite or	_		
esi	4.4	into the storm drainage system. Credit for Self-			
θ		Treating and/or Self-Retaining Areas may be			
Site		applied per the requirements of Section 1.1.2B.			
		Driveways are the minimum required to			
		accommodate public safety and emergency access.			
	45	(Residential driveways providing access to	,		
	4.5	parking areas serving three residences or less	\checkmark		
		should be a maximum of 10 feet wide where			
		practicable)			
	4.6	Residential driveways serving three residences or			
	т.0	less are shared wherever practicable.			V
		When alleys are not utilized, "two-track"			
	4.7	driveways are utilized for driveways serving three			
		residences or less wherever practicable.			▼
	48	Tandem parking for single-family residential uses			
	110	is incorporated wherever practicable.			•

lawn surface is minimized.

	Item #	Description	Verified	Technically Infeasible	Not Appilcable
		Preferably all new parking spaces, at least 50% of			* *
	5.1	new parking spaces in excess of 10 parking spaces, and all parking spaces in excess of the amount required by this Ordinance shall be constructed of permeable materials with a minimum 8-inch crushed stone infiltration bed or as otherwise required by the Town Engineer. In areas of poorly draining soils the permeable design may still provide water quality treatment as a "flow-through" condition with an underdrain. All permeable pavement systems shall meet the requirements of Stormwater Article 1.2.B.7.			
Parking Design	5.2	Signs marking permeable pavement and clearly listing applicable maintenance requirements shall be installed immediately adjacent to areas containing 5 or more permeable parking spaces, and a permeable pavement maintenance program shall be included as part of the Stormwater Operation and Maintenance Plan.			
	5.3	Parking lot islands and landscape buffer locations should be coordinated with topography and configured as depressed bioretention and/or natural swale systems.	_		
	5.4	Ten percent of parking spaces provided in excess of 10 spaces should be compact parking spaces.	_		
	5.5	Sites shall include bicycle racks allowing for a bicycle frame to be secured with at least two points of contact, See Parking Standards Section 9.01 for specific requirements.	\checkmark		
BMP Design	6.1	Stormwater BMPs are designed per the requirements of the Connecticut Stormwater Quality Manual, latest version, or using alternate design methods approved by the Town Engineer.	\checkmark		
	6.2	Stormwater BMPs for projects in Simsbury Center are selected according to transect zone and soil conditions per the BMP Selection Matrix Table.			\checkmark
	6.3	Site landscaping design uses native plantings and xeriscaping strategies, and the area of ornamental	\checkmark		

				Technically	Not			
	Item #	Description	Verified	Infeasible	Appilcable			
		Rain barrels, cisterns, and/or other rainwater						
ltinued)		harvesting techniques to reuse rainwater for						
	0.4	irrigation and other non-potable uses are						
		incorporated into the site design.						
cor		Qualifying trees, with appropriate soil volume,						
) u		structural soils, and/or root barriers as required,						
sig	6.5	are incorporated into the parking and landscape	\checkmark					
De		design as stormwater BMPs (see Tree Impervious	•					
IP]		Area Credit Section 1.2B).						
BN		An Erosion and Soil Sedimentation Control Plan						
	6.6	conforming to the standards of Connecticut						
	0.0	Guidelines for Soil Erosion and Sediment Control	\checkmark					
		is included with the project design.						
		Water quality and infiltration BMPs incorporate						
	(7	appropriate pretreatment per the Connecticut	./					
	6.7	Stormwater Quality Manual, latest revision, or	V					
	alternate de	alternate designs approved by the Town Engineer						
	71	The site design accommodates maintenance	1					
nance	/.1	access for all stormwater BMPs.	\checkmark					
	7 0	Stormwater Operation and Maintenance Plan is	1					
	7.2	included.	\mathbf{V}					
nte		Responsible Party for implementation,						
lai	7.0	maintenance, and correction of stormwater	•					
Z	/.3	treatment practices is designated including	\checkmark					
		contact information.						

Appendix B:

NRCS Soil Survey Information GEI Test Pit Data

FEMA Floodway Map

NRCS Soil Survey Information

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
34A	Merrimac fine sandy loam, 0 to 3 percent slopes	A	0.7	3.5%
36A	Windsor loamy sand, 0 to 3 percent slopes	A	1.4	7.0%
38C	Hinckley loamy sand, 3 to 15 percent slopes	А	1.9	10.0%
306	Udorthents-Urban land complex	В	4.2	21.9%
307	Urban land	D	11.2	57.6%
Totals for Area of Intere	est	19.4	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

GEI Test Pit Data

1263 Hopmeadow Street, Simsbury, CT GEI Proj # 2302394- 1.1 Soil Permeability Calculations

FT

WELL CALCULATION

$k'_{v} = \frac{d^{2}(\frac{\pi}{11}\frac{k'_{v}}{k_{v}}\frac{D}{m} + 1)}{D^{2}(t_{2} - t_{1})}$	$\frac{L}{-}\ln\frac{H_1}{H_2}$	("Soil in ca
TEST LOCATION	B-9	
Length of Casing	426.7	(cm)
Diameter, stone pack	16.8	D (cm)
Diam., casing	5.08	d (cm)
Test Length	61.0	L (cm)
Transformation ratio	1	m
k'v/kv	1	Assumed
Soil Classification:		WIDELY-G

("Soil in casing in uniform soil," Lambe and Whitman, 1969.)
(m) Depth of Test 12.0
D (cm) GS Elevation 194.5
d (cm) Depth to GW > 18 ft
L (cm) m

WIDELY-GRADED SAND (SW); ${\sim}90\%$ F-sand, ${\sim}5\%$ F-gravel, ${\sim}5\%$ NP fines, moist.

Test 1

Donth to Water (cm)	Time	Vertical Perm.	Vertical Perm.
Depth to water (cm)	t	k'v (cm/sec)	k'v (in/hr)
3.30	10		
5.59	20	3.17E-01	448.59
7.62	30	1.87E-01	264.47
9.40	40	1.26E-01	178.83
11.18	50	1.04E-01	147.75
12.19	60	5.23E-02	74.19
13.21	70	4.82E-02	68.25
13.97	80	3.37E-02	47.83
14.99	90	4.22E-02	59.86
15.75	100	2.98E-02	42.29
16.00	110	9.63E-03	13.64
16.51	120	1.88E-02	26.65
17.27	130	2.71E-02	38.47
17.78	140	1.74E-02	24.72
18.80	150	3.34E-02	47.38
-		AVERAGE	30.17

Test 2							
	Time						
Depth to Water (cm)	t	Vertical Perm.	Vertical Perm.				
	(seconds)	k'v (cm/sec)	k'v (in/hr)				
4.57	10						
7.37	20	2.87E-01	406.67				
9.14	30	1.30E-01	184.37				
10.67	40	9.27E-02	131.44				
12.45	50	9.27E-02	131.44				
13.72	60	5.85E-02	82.85				
14.73	70	4.30E-02	60.93				
15.75	80	4.01E-02	56.87				
16.51	90	2.84E-02	40.29				
17.27	100	2.71E-02	38.47				
18.29	110	3.44E-02	48.74				
18.80	120	1.65E-02	23.36				
19.30	130	1.60E-02	22.74				
19.81	140	1.56E-02	22.15				
20.32	150	1.52E-02	21.59				
20.83	160	1.49E-02	21.06				
		AVERAGE	21.88				

GEI Consultants, Inc. GEI Proj # 2302394- 1.1 **Guelph Permeameter Testing** 6/20/2023 Test Date

Test Location	B-10
Test Elevation	176.5
Reservoir	Combined
Unit Set	6 in.
Depth of Test	2 FT
Depth to GW	Not encountered
GEI Rep.	T. Rezzani, T. Yurman
Soil Type	SILTY SAND (SM); ~659

SILTY SAND (SM); ~65% F-C sand, ~30% NP fines, ~5% F gravel, moist.

Water Level in Well 4.1 cm							
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change			
Time (Timi)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)			
0.0833		1.0					
0.167	0.08	1.8	0.8	9.60			
0.250	0.08	2.9	1.1	13.20			
0.333	0.08	3.5	0.6	7.20			
0.417	0.08	3.8	0.3	3.60			
0.500	0.08	4.0	0.2	2.40			
0.583	0.08	4.4	0.4	4.80			
0.667	0.08	4.7	0.3	3.60			
0.750	0.08	4.9	0.2	2.40			
0.833	0.08	5.2	0.3	3.60			
0.917	0.08	5.4	0.2	2.40			
1.000	0.08	5.6	0.2	2.40			
1.083	0.08	5.9	0.3	3.60			
1.167	0.08	6.0	0.1	1.20			
1.250	0.08	6.3	0.3	3.60			
1.333	0.08	6.4	0.1	1.20			
1.417	0.08	6.6	0.2	2.40			
1.500	0.08	6.8	0.2	2.40			
1.583	0.08	6.9	0.1	1.20			
1.667	0.08	7.1	0.2	2.40			
1.750	0.08	7.2	0.1	1.20			
Steady Rate of Change, R ₁ (cm/min) 2.16							

Wa	Water Level in Well 7.1 cm						
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change			
rine (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)			
0.1667		11.6					
0.333	0.17	11.7	0.1	0.60			
0.500	0.17	11.8	0.1	0.60			
0.667	0.17	11.9	0.1	0.60			
0.833	0.17	12.1	0.2	1.20			
1.000	0.17	12.2	0.1	0.60			
1.167	0.17	12.3	0.1	0.60			
1.333	0.17	12.6	0.3	1.80			
1.500	0.17	12.7	0.1	0.60			
1.667	0.17	12.8	0.1	0.60			
1.833	0.17	12.9	0.1	0.60			
2.000	0.17	13.0	0.1	0.60			
2.167	0.17	13.1	0.1	0.60			
2.333	0.17	13.2	0.1	0.60			
2.500	0.17	13.3	0.1	0.60			
	0.60						

GEI Consultants, Inc.	
GEI Proj # 2302394- 1.1	
Guelph Permeameter Testing - B-10	

Date:6/26/2023Date:6/28/2023

Single Head Method - Test 1

•	Reservoir		-	Combined		
٠	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
•	Water Head Height	H_1	-	4.1	cm	
٠	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	R_1	-	2.16	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C_1	-	0.667		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₁	-	1.2679	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic	K _{fs}	_	2.474E-03	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Conductivity Soil Matrix Flux Potential	Φ		2 0625 02	2/22	(Table 3: One Head, Combined Reservoir)
•	Son Mathx Hax Potential	Ψm	-	2.002E-02	cm /sec	(rable 3. one nead, combined reservoir)
Sin	gle Head Method - Test 2					
Tes	t Data and Information					
٠	Reservoir		-	Combined		
٠	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
•	Water Head Height	H_2	-	7.1	cm	
•	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
•	Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	R ₂	-	0.60	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C ₂	-	0.980		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₂	-	0.35	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	4.792E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Soil Matrix Flux Potential	$\Phi_{\rm m}$	-	3.993E-03	cm²/sec	(Table 3: One Head, Combined Reservoir)
Ter	t Averages					-
les	Soil Saturated Hydraulic					
•	Conductivity	K_{fs}	-	1.477E-03	cm/sec	
				2.1	in/hour	

GEI Consultants, Inc. GEI Proj # 2302394- 1.1 **Guelph Permeameter Testing** Test Date 6/20/2023 **Test Location** B-11 **Test Elevation** 175.8 Reservoir Combined Unit Set 4 in. 1.4 FT Depth of Test Depth to GW Not encountered GEI Rep. T. Rezzani, T. Yurman WIDELY GRADED SAND WITH GRAVEL (SW); ~80% F-C sand, ~15% F gravel, ~5% NP Soil Type fines, dry to moist.

Water Level in Well 5 cm								
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change				
nime (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)				
0.0833		1.6						
0.167	0.08	1.6	0	0.00				
0.333	0.17	1.6	0	0.00				
0.500	0.17	1.6	0	0.00				
0.667	0.17	1.7	0.05	0.30				
0.833	0.17	2.1	0.45	2.70				
1.000	0.17	2.3	0.2	1.20				
1.167	0.17	2.4	0.05	0.30				

Steady Rate of Change, R₁ (cm/min)

0.64

N	Water Level in Well			
Time (min)	Time Change (min)	Water Level in Res. (cm)	Change in Res. Water Level (cm)	Rate of Change (cm/min)
0.2500		4.7		
0.500	0.25	4.8	0.1	0.40
0.750	0.25	4.9	0.1	0.40
1.000	0.25	5.0	0.05	0.20
1.250	0.25	5.0	0.05	0.20
1.500	0.25	5.1	0.1	0.40
1.750	0.25	5.2	0.1	0.40
2.000	0.25	5.3	0.05	0.20
2.250	0.25	5.3	0.05	0.20
2.500	0.25	5.4	0.1	0.40
2.750	0.25	5.5	0.05	0.20
3.000	0.25	5.5	0.05	0.20
Steady Rate of Change, R2 (cm/min)				0.29
GEI Consultants, Inc.				

GEI Proj # 2302394- 1.1				
Guelph Permeameter Testing - B-11				

Date:6/26/2023Date:6/28/2023

Single Head Method - Test 1

|--|

	Posonioir			Combined		
•	Reservoir Cross Sactional Area		-		cm ²	(Dravidad on Dormaamatar)
•	Water Head Height	ы	-	55.22	cm	(Provided off Permeanleter)
•		п ₁	-	5		Assumed clightly larger than 2 cm red, hand auger
•	Soil Toyturo Structuro Catogony	d	-	5.2	CIII	(Table 2)
•	Stordy State Date of Water		-	5		
•	Level Change	R ₁	-	0.64	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C_1	-	0.768		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₁	-	0.3774	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic	K _{fs}	-	6.530E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
	Soil Matrix Elux Potential	Φ		F 441F 02	21	(Table 3: One Head, Combined Reservoir)
•	Son Matrix Flux Potential	Ψm	-	5.441E-03	cm /sec	(Table 5. One nead, combined reservoir)
Sing	gle Head Method - Test 2					
Tes	t Data and Information					
٠	Reservoir		-	Combined	2	
٠	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
٠	Water Head Height	H ₂	-	8	cm	
٠	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
٠	Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	R ₂	-	0.29	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C ₂	-	1.063		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₂	-	0.167714286	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic	K _{fs}	-	2.084E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Soil Matrix Flux Potential	Φ _m	-	1.737E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
					,	
Tes	t Averages					7
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	4.307E-04	cm/sec	
				0.6	in/hour	

GEI Consultants, Inc. GEI Proj # 2302394- 1.1 **Guelph Permeameter Testing** Test Date 6/20/2023

Test Location	B-12
Test Elevation	176
Reservoir	Combined
Unit Set	5 in.
Depth of Test	1.5 FT
Depth to GW	Not encounte
GEI Rep.	T. Rezzani, T.
Soil Type	WIDELY-GRAD

ered Yurman DED SAND WITH GRAVEL (SW); ~85% F-C sand, ~10% F-gravel, ~5% NP fines, moist.

Water Level in Well 6.7 cm *							
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change			
Time (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)			
0.1667		2.0					
0.333	0.17	2.5	0.5	3.00			
0.500	0.17	3.0	0.5	3.00			
0.667	0.17	3.2	0.2	1.20			
0.833	0.17	3.2	0	0.00			
1.000	0.17	3.3	0.1	0.60			
1.167	0.17	3.4	0.1	0.60			
1.333	0.17	3.5	0.1	0.60			
1.500	0.17	3.5	0	0.00			
1.667	0.17	3.6	0.1	0.60			
1.833	0.17	3.6	0	0.00			
2.000	0.17	3.6	0	0.00			
2.167	0.17	3.7	0.1	0.60			
2.333	0.17	3.8	0.1	0.60			
2.500	0.17	3.9	0.05	0.30			
2.667	0.17	3.9	0.05	0.30			
2.833	0.17	4.0	0.1	0.60			
3.000	0.17	4.1	0.05	0.30			
	Steady Rate of	Change, R ₁ (cr	n/min)	0.39			

W				
Time (min)	Time Change	Water Level	Change in Res.	Rate of Change
Time (min)	(min)	in Res. (cm)	Water Level (cm)	(cm/min)
0.1667		8.4		
0.333	0.17	9.0	0.6	3.60
0.500	0.17	9.2	0.2	1.20
0.667	0.17	9.4	0.2	1.20
0.833	0.17	9.6	0.2	1.20
1.000	0.17	9.8	0.2	1.20
1.167	0.17	10.0	0.2	1.20
1.333	0.17	10.2	0.2	1.20
1.500	0.17	10.4	0.2	1.20
1.667	0.17	10.7	0.3	1.80
1.833	0.17	10.8	0.1	0.60
2.000	0.17	11.1	0.3	1.80
2.167	0.17	11.3	0.2	1.20
2.333	0.17	11.5	0.2	1.20
2.500	0.17	11.7	0.2	1.20
2.667	0.17	11.9	0.2	1.20
	Steady Rate of	Change, R2 (c	m/min)	1.28

GEI Consultants, Inc.
GEI Proj # 2302394- 1.1
Guelph Permeameter Testing - B-12

Single Head Method - Test 1

|--|

103	butu una information					
٠	Reservoir		-	Combined		
٠	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
٠	Water Head Height	H_1	-	6.7	cm	
٠	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
٠	• Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	R_1	-	0.39	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C ₁	-	0.941		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₁	-	0.2264	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	3.214E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Soil Matrix Flux Potential	Φ _m	-	2.678E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
Sin	gle Head Method - Test 2					
Tes	t Data and Information					
٠	Reservoir		-	Combined		
•	Reservoir Cross-Sectional Area		-	35.22	cm ²	(Provided on Permeameter)
٠	Water Head Height	H_2	-	10.4	cm	
٠	Borehole Radius	а	-	3.2	cm	Assumed slightly larger than 3cm rad. hand auger
٠	Soil Texture-Structure Category		-	3		(Table 2)
•	Steady State Rate of Water Level Change	R ₂	-	1.28	cm/min	(Obtained during testing)
Tes	t Calculations and Results					
•	Microscopic Capillary Length Factor	α*	-	0.12	cm ⁻¹	(Table 2: Based on Soil Texture-Structure Category)
•	Shape Factor	C ₂	-	1.266		(Table 2: Based on Soil Texture-Structure Category)
•	Volumetric Flow Rate	Q ₂	-	0.748425	cm ³ /sec	(Table 3: One Head, Combined Reservoir)
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	7.493E-04	cm/sec	(Table 3: One Head, Combined Reservoir)
•	Soil Matrix Flux Potential	Φ _m	-	6.244E-03	cm ² /sec	(Table 3: One Head, Combined Reservoir)
Tes	t Averages					
•	Soil Saturated Hydraulic Conductivity	K _{fs}	-	5.353E-04	cm/sec	
				0.8	in/hour	

GEI Consultants, Inc. GEI Proj # 2302394-1.1 Guelph Permeameter Testing

Table 2

Soil Texture-Structure Category	$\alpha^{*}(\text{cm}^{-1})$	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.081 + 0.121 \left(\frac{H_{2}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{\frac{H_{1}}{a}}{1.992 + 0.091(\frac{H_{1}}{a})}\right)^{0.683}$ $C_{2} = \left(\frac{\frac{H_{2}}{a}}{1.992 + 0.091(\frac{H_{2}}{a})}\right)^{0.683}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{\frac{H_{1}}{a}}{2.074 + 0.093(\frac{H_{1}}{a})}\right)^{0.754}$ $C_{2} = \left(\frac{\frac{H_{2}}{a}}{2.074 + 0.093(\frac{H_{2}}{a})}\right)^{0.754}$

Calculation formulas related to shape factor (C). Where H_t is the first water head height (cm), H_2 is the second water head height (cm), α is borehole radius (cm) and α^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C_t needs to be calculated while for two-head method, C_1 and C_2 are calculated (Zang et al., 1998).

Table 3

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$ $C_1 \times O_1$			
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$			
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi \left(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1})\right)}$ $G_{2} = \frac{H_{1}C_{2}}{\pi \left(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1})\right)}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi \left(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1})\right)}$			
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$			

Calculation formulas related to one-head and two-head methods. Where *R* is steady-state rate of fall of water in reservoir (cm/s), K_{fs} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), *a* is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) , H_2 is the second head of water established in borehole (cm) and *C* is Shape factor (from Table 2).

ſ	BORIN	3ORING INFORMATION LOCATION: See plan.									BORING	
	GROU	ND SU	RFA	CE EL.	(ft): 177			DATE START/END:	6/19/2			
	VERTI	CAL D	ATU	M:	· · · <u> </u>			DRILLING COMPANY	: Se	aboard	B-1	
	ΤΟΤΑΙ	. DEP1	⁻ H (1	t): 17.	0			DRILLER NAME: M	ike Gly	'nn		
	LOGG	OGGED BY: T. Yurman						RIG TYPE:			PAGE 1 of 1	
ł	DRILL	RILLING INFORMATION										
	HAMMER TYPE: Safety Hammer - semi-automatic						omatic		NA/ NA			
	DRILL	NG MI	J.D. ETH	OD: Ho	ollow-stem	Auger			IVI			
	WATER LEVEL DEPTHS (ft): Groundwater not encountered							ered				
	ABBREVIATIONS: Pen. = Penetration Length S Rec. = Recovery Length C RQD = Rock Quality Designation C = Length of Sound Cores>4 in / Pen.,% S WOR = Weight of Rods E WOH = Weight of Hammer H					of Length Length ality Designa Sound Core of Rods of Hammer	ation es>4 in / Pen.,'	S = Split Spool Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger	r	 NA, NM = NO Applicable, No Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. Diameter 		
ľ				Sa	ample Inf	ormation			e			
	Elev. (ft)	Deptl (ft)	n s	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Laver Nan	Soil an	d Rock Description	
ł										3 in. ASPHALT		
	-	_		<u> </u>	1	0.115				S1: SILTY SAND (SM): ~	70% F-sand ~30% NP fines brown	
5		- 5	X	/ S1 t 24/8 9-9-7-8		dry.						
3/28/2					3							
013.GDT 6	- - - 170 - - -			S2	3 to 5	24/15	5-5-5-5			S2: NARROWLY-GRADE NP fines, light-brown, dry.	D SAND (SP); ~95% F-M sand, ~5%	
MPLATE 2			— 5 -		S3	5 to 7	24/8	8-7-4-5		FILL	S3: Similar to S2; ~95% F light-brown, dry.	-C sand (mostly M-C), ~5% NP fines,
I DATA TE		_	\mathbb{N}	S4	7 to	24/5	8-8-6-6			S4: Similar to S3, minor b sampler).	rick debris, no sample (debris in	
O.GPJ GE		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
BURY GE(' 	S5	10 to 12	24/19	2-3-5-6			S5: NARROWLY-GRADE F-sand, ~10% NP fines, li	D SAND WITH SILT (SP/SM); ~90% ght-brown, moist.	
ST SIMS	_		\square									
EADOW 3	-								SAND			
МООН	_	- 15	; L									
CT-1263	-		S6	15 to 17	24/6	9-9-11-8			S6: Similar to S5, damp.			
PROSPE	160							Planned depth. Backfilled with drill cutting	S.			
302394 -	_	_										
VAME 2	-	— 20										
-AYER I	_	_										
ATION-L		_										
0 1-LOCA	-	_										
Image: Notes: PROJECT NAME: Prospect-1263 Hopmeadow St Simsbury CITY/STATE: Simsbury, Connecticut CITY									Hopmeadow St			
Ъ									GEI	FRUJEUT NUMBER: 2302394	• ULI Consultants	

	004-										BORING
	LOCA GROU	HON: ND SU	See RFA	ce eL.	(ft): 176	.5		DATE START/END: 6	6/19/2	023 - 6/19/2023	
,	VERTI	CAL D	ATU	M:	(,	.0		DRILLING COMPANY:	Sea	board	B-2
-	ΤΟΤΑΙ	DEP	⁻ H (f	t): 17.	0			DRILLER NAME: Mik	e Gly	n	
1	LOGG	ED BY	: _]	. Yurma	in			RIG TYPE:			PAGE 1 of 1
h		ING IN	FOR	ΜΑΤΙΟ	J						
	HAMM	ER TY	PE:	Safety	• Hammer	- semi-aut	omatic	CASING I.D./O.D.: N	A/ NA	CORE BAR	RREL TYPE:
	AUGE	R I.D./0	D.D.:	3.25	inch / NA			DRILL ROD O.D.: NN	Λ	CORE BAR	RREL I.D./O.D. NA / NA
	DRILL	NG M	ETH	OD: <u>H</u>	ollow-stem	Auger					
`	WATE	R LEV	EL D	EPTHS	(ft): <u>¥</u> 1	7.0					
ľ	ABBRI	EVIAT	ONS	S: Pen. Rec. RQD WOF WOF	= Penetration = Recovery = Rock Qu = Length of R = Weight co H = Weight co	on Length Length ality Designa Sound Core of Rods of Hammer	ation ss>4 in / Pen.,%	S = Split Spoon Sample Qp = Pocket Penetrometer Strength C = Core Sample Sv = Pocket Torvane Shear Strength U = Undisturbed Sample LL = Liquid Limit SC = Sonic Core PI = Plasticity Index DP = Direct Push Sample HD = Photoionization Detector HSA = Hollow-Stem Auger LD (O, D, = Inside Diameter/Quitside			NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. iameter
ŀ			1	Sa	ample Inf	ormation		0	Ð		
	Flev	Dept	\mathbb{L}			Dam (Diama	Drilling Remarks/	Vam		
	(ft)	(ft)	S	Sample	Depth	Rec.	per 6 in.	Field Test Data	/er ľ	Soil and I	Rock Description
				INO.	(11)	(in)	or RQD		Lay		
ſ	_				0.5					4 in. ASPHALT	
		F	\mathbb{N}	S1	to	24/20	12-11-			F-sand, ~10% NP fines, bro	wn, dry to moist.
/23		L	\mathbb{N}		2.5						
6/28	_	-	$\overline{\Lambda}$	S2	2.5	24/18	16-10-8-			S2: SILTY SAND (SM); ~65	% F-sand, ~35% NP fines, brown,
GDT	-		X		4.5		7			ary to moist.	
2013.	_		\mathbb{H}		15						SAND WITH SILT (SP/SM): ~90%
ATE 2	_	- 5	۶N	S3	to	24/8	7-8-13-			F-sand, ~10% NP fines, ligh	t brown, dry to moist.
MPL		_	Λ		0.5						
A TE	170—	_	$\overline{\Lambda}$	S4	6.5	24/15	12-10-			S4: NARROWLY-GRADED	SAND (SP); ~95% F-M sand, ~5%
DAT	_		X		8.5		10-10			NP fines, light brown, moist.	
ШIJ	_	-	\square						AND		
.GPJ	_	-							s N		
GEO		- 10		0.5	10	0.445	0.7.5.5			S5 ⁻ Similar to S4	
BURY	_	_	Ŋ	\$5	to	24/15	6-7-5-5				
IMSE			$ \rangle$		12						
STS	-	-									
MOC	_	-									
MEAL		F									
НОН	-	- 1!									· · · ·
1263	-		W	S6	15 to	24/21	4-6-4-4			S6: Similar to S4, wet at bot	tom of sample.
-CT-	160 —	-	Ň		17						
OSPE	_	-	\vdash							Planned depth.	
- PR	_	F								Backfilled with drill cuttings.	
2394	-	-									
230	-										
IAME	-	- 20	'								
ĒR N	_	F									
4-LAY	_	-									
VTIO	-	-									
린 -											
IN ST					1	1	<u>ı </u>			IFCT NAME: Prospect-1263 Ho	pmeadow St
GEI WOBUR.	VIE								Sims CITY GEI I	STATE: Simsbury, Connecticut PROJECT NUMBER: 2302394	GEI Consultants

ſ	BORIN		ORN	MATION								BORING			
	GROU		See	e pian. CE EL.	(ft): 176			DATE START/E	DATE START/END: _6/19/2023 - 6/19/2023						
	VERTI	CAL D	ATU	M:				DRILLING COM	PANY:	Sea	board	B-3			
	TOTAL	. DEP1	H (f	t): 17.0	0			DRILLER NAME	: Mike	Glyn	n	_ •			
	LOGG	ED BY	_	Γ. Yurma	in			RIG TYPE:				PAGE 1 of 1			
	DRILLI HAMM	NG IN	FOR PF·	MATION Safety	N Hammer	- semi-aut	omatic) · NA/	NA					
	AUGEI	R I.D./0	.D.	3.25	inch / NA	- semi-aut	Unatic	DRILL ROD O.D	.: NM	INA	CORE BAI	RREL I.D./O.D. NA / NA			
	DRILLI	NG M	ΞТΗ	OD: Ho	ollow-stem	Auger									
	WATE	R LEV	EL D	DEPTHS	(ft): <u>Gro</u>	undwater r	not encounte	ered							
	ABBRI	EVIATI	ONS	S: Pen. Rec. RQD WOF	= Penetration = Recovery = Rock Quite = Length of R = Weight of H = Weight of	on Length / Length ality Designa / Sound Core of Rods of Hammer	ation s>4 in / Pen.,	S = Split Spoon Sar C = Core Sample U = Undisturbed Sa % SC = Sonic Core DP = Direct Push Si HSA = Hollow-Stem	S = Split Spoon Sample Qp = Pocket Penetrometer Strength C = Core Sample Sv = Pocket Torvane Shear Strength U = Undisturbed Sample LL = Liquid Limit SC = Sonic Core PI = Plasticity Index DP = Direct Push Sample PID = Photoionization Detector LSA = Holew Star Auror LD (O D = Inside Diameter/Outside			NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.			
ł			Ţ	Sa		ormation			, tugoi	Ø					
		Dent	\vdash	00				Drilling Domort		am					
	(ft)	(ft)	ן נ	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Dat	ta	Layer N	Soil and	Rock Description			
23		_		S1	0.5 to 2.5	24/18	10-6-10- 12				3 in. ASPHALT S1: SILTY SAND (SM); ~70 dry to moist.	% F-C sand, ~30% NP fines, brown,			
13.GDT 6/28/	-	_		S2	2.5 to 4.5	24/16	10-15-9- 12				S2: WIDELY-GRADED SAN fines, brown, dry to moist.	ID (SW); ~95% F-C sand, ~5% NP			
MPLATE 20	- 170—	— 5 -		S3	4.5 to 6.5	24/7	8-11-12- 13				S3: Similar to S2.				
GEI DATA TE	-	_		S4	6.5 to 8.5	24/16	11-8-9-9			AND	S4: Similar to S2, moist.				
SIMSBURY GEO.GPJ	-	- 10 -		S5	10 to 12	24/11	9-9-9-10			S	S5: Similar to S2, light brow	n, moist.			
CT-1263 HOPMEADOW ST	- - 160	- 15 		S6	15 to 17	24/18	6-6-6-7				S6: Similar to S2, F-sand, b	rown, moist.			
CATION-LAYER NAME 2302394 - PROSPE	-	- - - 20 -	,								Planned depth. Backfilled with drill cuttings.				
									P S C G	ROJ imst ITY/ EI P	ECT NAME: Prospect-1263 Ho bury STATE: Simsbury, Connecticu ROJECT NUMBER: 2302394	pmeadow St t GEI Consultants			

BORIN		OF	RMATION						BORING			
GROU	IND SU	JRI	ACE EL.	(ft): 196			DATE START/END: 6	: 6/19/2023 - 6/19/2023				
VERT		A	'UM:				DRILLING COMPANY:	Sea	board	B-5		
ΤΟΤΑ	L DEP	ΤН	(ft):2	.0			DRILLER NAME: Mike	e Glyı	ท			
LOGG	ED BY	' :	T. Yurma	an			RIG TYPE:			PAGE 1 of 1		
DRILL	ING IN	IFC	RMATIO	N								
НАММ	IER T	PE	: Safet	y Hammer	- semi-aut	omatic	CASING I.D./O.D.: NA	V NA	CORE BAR	REL TYPE:		
AUGE	R I.D./	0.0).: <u>3.25</u>	inch / NA			DRILL ROD O.D.: NM		REL I.D./O.D. NA / NA			
	ING M	E I FI		(ff): Gro	i Auger undwater i	not encountered	4					
				(11)			4					
ABBR	EVIAT	101	NS: Pen Rec RQI	. = Penetration . = Recovery) = Rock Quant = Length of R = Weight of	on Length / Length ality Designa / Sound Core of Rods	ation s>4 in / Pen.,%	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample		NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.			
			WO	H = Weight o	of Hammer		HSA = Hollow-Stem Auger		I.D./O.D. = Inside Diameter/Outside D	iameter		
			S	ample Inf	ormation			me				
Elev. (ft)	r. Depth (ft) Sampl No.		Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Drilling Remarks/ Field Test Data	Layer Na	Soil and F	Rock Description		
-	-		S1	0.5 to 2.5	24/16	7-7-6-6			2 in. ASPHALT S1: WIDELY-GRADED SAN fines, brown, dry.	D (SW); ~95% F-C sand, ~5% NP		
-	-		S2	2.5 to 4.5	24/17	7-9-9-9			S2: Similar to S1.			
- 190—	; 	5	S3	4.5 to 6.5	24/11	8-9-23- 15			S3: Similar to S1; ~85% F-C fines, light brown.	sand, ~10% F-gravel, ~5% NP		
-	_		S4	6.5 to 8.5	24/16	20-12- 11-10			S4: Similar to S1, moist.			
	+ +- 1 +	0	S5	10 to 12	24/17	8-6-6-6		SAND	S5: Similar to S1, moist.			
- - 180 — -	- - 1 -	5	S6	15 to 17	24/10	7-6-5-5			S6: NARROWLY-GRADED F-sand, ~15% NP fines, brow	SAND WITH SILT (SP/SM); ~85% wn, damp.		
	- 2 - 2		S7	20 to 22	24/20	10-10-9- 9			S7: NARROWLY-GRADED F-sand, ~10% NP fines, brov Planned depth.	SAND WITH SILT (SP/SM); ~90% wn, moist.		
-	+								Backfilled with drill cuttings.			
NOTE	OTES:								PROJECT NAME: Prospect-1263 Hopmeadow St Simsbury CITY/STATE: Simsbury, Connecticut GEI PROJECT NUMBER: 2302394			

BOR	RING	g inf	OR	MATION								BORING	
LOC	AT	ION:	Se	e plan.	(64). 400				6140"	201	22 6/40/2022		
GRO		אם SU אם ראי	JRF	ACE EL.	(ft): <u>196</u>			DATE START/END:	6/19/2	202	23 - 6/19/2023	R C	
VER		ALD	νΑΓί τιι ΄	JMI:	0				r: <u>Se</u>	eat		D-0	
	AL IGF	ים ם: אם ם:	ип (/-	11.j. <u>22</u> . T. Vurma	o an				ike Gl	yn			
					ai I							PAGE 1 of 1	
DRIL	LII	NG IN	IFO	RMATIO	N					_			
HAN			PE:	Safety	/ Hammer	- semi-aut	omatic	CASING I.D./O.D.:	<u>NA/ NA</u>	Α	CORE BAR		
		(I.D./ NG M	0.D.	: <u>3.25</u>	INCN / INA	Augor			IVI			REL I.D./O.D. <u>NA / NA</u>	
WAT	-LII FFR		EIN EIN	DEPTHS	(ff): Gro	undwater i	not encounte	ered					
					()								
ABB	RE	EVIAT	ION	S: Pen. Rec. RQE WOI WOI	= Penetrati = Recovery = Rock Qu = Length of R = Weight of H = Weight of	on Length / Length ality Designa Sound Core of Rods of Hammer	ation es>4 in / Pen.,'	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample % SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Aug	r	C S F F I	Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength L = Liquid Limit PI = Plasticity Index PID = Photoionization Detector D./O.D. = Inside Diameter/Outside D	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler. iameter	
				S	ample Inf	ormation			٩	0			
Floy	,	Dont	h					Drilling Pomarks/	am la mel				
(ft)	/-	(ft)		Sample No.	Depth (ft)	Pen./ Rec. (in)	Blows per 6 in. or RQD	Field Test Data	l aver N	rayer r	Soil and F	Rock Description	
23	-	-	X	S1	0.5 to 2.5	24/17	8-10-10- 10				2 in. ASPHALT S1: NARROWLY-GRADED F-sand, ~10% NP fines, brov	SAND WITH SILT (SP/SM); ~90% wn, dry to moist.	
13.GDT 6/28/	+	-		S2	2.5 to 4.5	24/17	10-6-6-7				S2: NARROWLY-GRADED fines, light brown, dry to moi	SAND (SP); ~95% F-sand, ~5% NP st.	
EMPLATE 20	+		5	S3	4.5 to 6.5	24/6	5-7-7-9				S3: Similar to S2; (SW), ~90 F-gravel.	% F-C sand, ~5% NP fines, ~5%	
PJ GEI DATA TI	+	-		S4	6.5 to 8.5	24/15	9-7-5-5				S4: Similar to S2.		
ST SIMSBURY GEO.G	-	1' - -	0	S5	10 to 12	24/1	8-9-12- 13		SAND		S5: Low recovery, similar to	S2.	
- PROSPECT-1263 HOPMEADOW 081		- 1 - -	5	S6	15 to 17	24/16	6-7-7-7				S6: Similar to S2; brown, m	oist.	
TION-LAYER NAME 2302394	+	- 2 -	0	S7	20 to 22	24/17	6-7-11- 14				S7: Similar to S2; moist. Planned depth. Backfilled with drill cuttings.		
									PRC Sim CIT	OJI Isbi	ECT NAME: Prospect-1263 Hop ury STATE: Simsbury, Connecticut		
GEI										GEI PROJECT NUMBER: 2302394			

BORING INFORMATION											BORING
		ON: _	See	plan.	(ft), 10/	F			110/20	Bolaito	
VERT					(π): <u>194</u>	.5			/19/20 Sea	board	B -7
TOTA			-1 (fi	NI	n				- Glvr	in	D-1
LOGG	SED	DBY:	т, т.	. Yurma	n			RIG TYPE:	o Olyr		DAGE 1 of 1
											PAGE 1 81 1
DRILL	IN	g inf	OR	MATION	1						
HAMN	ИEF	R TYF	E:	Safety	Hammer	- semi-auto	omatic	CASING I.D./O.D.: NA	V NA	CORE BAR	REL TYPE:
AUGE	RI	I.D./O	.D.:	<u>3.25</u>	inch / NA	A		DRILL ROD O.D.: <u>NM</u>		CORE BAR	REL I.D./O.D. NA / NA
	-1111		וווי חו	JD: <u>на</u> Ертне	(fft): Gro	Auger		d			
					(11)010			u			
ABBR	REV	/IATIC	ONS	Pen. Rec. RQD	= Penetration = Recovery = Rock Quarts = Length of	on Length Length ality Designa Sound Core	tion s>4 in / Pen.,%	S = Split Spoon Sample Qp = Pocket Penetrometer Strength C = Core Sample Sv = Pocket Torvane Shear Strength U = Undisturbed Sample LL = Liquid Limit SC = Sonic Core PI = Plasticity Index			NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D.
				WOF	t = Weight o I = Weight o	of Rods of Hammer		DP = Direct Push Sample HSA = Hollow-Stem Auger		I.D./O.D. = Inside Diameter/Outside D	iameter
				Sa	ample Inf	ormation			ЭĒ		
Elev.	lev. Depth						Plowe	Drilling Remarks/	Nan		
(ft)	(ft) Sample Depth Rec. per 6 in. No. (ft) (in) or RQD			per 6 in. or RQD	Field Test Data	Layer					
<u> </u>										2 in. ASPHALT	
-	S1 0.5 24/12 7-7-6-7									S1: NARROWLY-GRADED F-sand, ~10% NP fines, bro	SAND WITH SILT (SP/SM); ~90% wn, dry to moist.
-	- S2 2.5 24/17 6-9-12- 4.5 12						6-9-12- 12			S2: NARROWLY-GRADED fines, light brown, dry to moi	SAND (SP); ~95% F-sand, ~5% NP st.
190-		- 5	$\left \right\rangle$	S3	4.5 to 6.5	24/19	6-6-10- 14			S3: Similar to S2; (SW), ~90 F-gravel.	% F-C sand, ~5% NP fines, ~5%
-	-		$\left \right\rangle$	S4	6.5 to 8.5	24/14	10-11- 11-13			S4: Similar to S2.	
		- 10	\mathbb{X}	S5	10 to 12	24/0	8-11-11- 10		SAND	S5: Low recovery, similar to	S2.
- - 180		- 15		S6	15	24/17	4-5-4-5			S6: Similar to S2; brown, m	oist.
-			Å		17						
-		- 20		S7	20 to 22	24/16	7-11-11- 10			S7: NARROWLY-GRADED F-sand, ~10% NP fines, bro	SAND WITH SILT (SP/SM); ~90% wn, dry to moist.
										Planned depth. Backfilled with drill cuttings.	
NOTES:									PRO. Simst CITY/ GEI P	JECT NAME: Prospect-1263 Hop pury STATE: Simsbury, Connecticut PROJECT NUMBER: 2302394	GEI Consultants

BORING INFORMATION											BORING
GROU	IND S	UR	FA	CE EL.	(ft):194	.5		DATE START/END: _6	/19/2	023 - 6/19/2023	
VERT	ICAL	DA	τU	M:				DRILLING COMPANY:	Sea	board	B-8
TOTA		PTH	l (fi T): <u>22.</u>	0				e Gly	n	
1000			_	. Tuilla							PAGE 1 of 1
DRILL	ING I	NF	OR	MATION	N						
HAMN		YP	E:	Safety	Hammer	- semi-aut	omatic		√ NA	CORE BAR	
DRILL	ING I	./O. ME1	о ГНО	<u> </u>	ollow-stem	Auger			1		REL I.D./O.D. <u>NA / NA</u>
WATE	RLE	VE	L D	EPTHS	(ft): _Gro	undwater r	not encountere	d			
ABBR	FVIA	TIO	NS	• Pen	= Penetrati	on Length		S = Split Spoon Sample		On = Pocket Penetrometer Strength	NA_NM = Not Applicable_Not Measured
				Rec.	= Recovery	Length	tion	C = Core Sample		Sv = Pocket Torvane Shear Strength	Blows per 6 in.: 140-lb hammer falling
				WOF	= Length of $R = Weight c$	Sound Core	s>4 in / Pen.,%	SC = Sonic Core		PI = Plasticity Index PID = Photoionization Detector	30 inches to drive a 2-inch-O.D. split spoon sampler.
				WOR	H = Weight d	of Hammer		HSA = Hollow-Stem Auger		I.D./O.D. = Inside Diameter/Outside D	iameter
	Sample Information								me		
Elev.	Dep	oth	0	omolo	Donth	Pen./	Blows	Drilling Remarks/	Na	Soil and I	Rock Description
(π)	(n	:)	3	No.	(ft)	Rec.	per 6 in.	Field Test Data	ayer		
						(11)			Ē		
-	- S1 0.5 24/16 8-11-11-									S1: NARROWLY-GRADED	SAND WITH SILT (SP/SM); ~90%
-	1		X		to 2.5		10			⊢-sand, ~10% NP fines, bro	wn, dry to moist.
-	F		$\left(\right)$		9 F						ND (SW): ~90% E C cond ~5% ND
	F		V	S2	to	24/16	10-9-12-			fines, ~5% F-gravel, light bro	own, dry to moist.
100											
190-	 	5	\setminus	S3	4.5	24/8	8-18-18-			S3: Similar to S2; ~90% F-C	sand, ~10% F-C gravel.
-			Ň		6.5		14				
-	-		$\left(\right)$	0.1	6.5	04/44	0.0.0			S4: NARROWLY-GRADED	SAND (SP): ~95% F-M sand. ~5%
-	F		X	54	to 8.5	24/14	9-8-8-9			NP fines, light brown, moist.	,,,,
_	F		/								
	F										
	-	10			10					S5: Low recovery similar to	\$2
-			V	S5	to	24/12	6-8-9-9		QN		02.
-	-		\wedge		12				l's		
-	F										
	F										
100	\vdash										
180-	1	15			15						SAND (SP): ~05% E cand ~5% ND
-	1		γ	S6	to	24/13	5-7-9-10			fines, light brown, moist.	ο, τημ (οι), 190 /0 τ -sanu, 70 /0 ΝΡ
-	1		\wedge								
-	ſ										
-	F										
	╞										
	-	20			20					S7: Similar to S6	
-	1		γ	S7	to	24/18	5-5-7-5				
-											
-	F									Planned depth. Backfilled with drill cuttings	
.	F										
NOTE	 e.										
NOTE	5:								Sims	DECT NAME: Prospect-1263 Hop Dury	
									CITY	STATE: Simsbury, Connecticut	(GEI 🗳
									GELL	RUJECI NUMBER: 2302394	ULI Consultants

BORIN	BORING											
GROU		1: <u>-</u> SUR	FA	plan. CF FI	(ft)· 194	5		DATE START/END:	· 6/20/2023 - 6/20/2023			
VERTI	CAL	. DA	TUI	оссс. И:	(it). <u>104</u>	.0		DRILLING COMPANY:	Sea	board	B-9	
ΤΟΤΑ	L DE	PTH	l (ft): 18.	0			DRILLER NAME: _Mik	e Glyr	าท	_ •	
LOGG	ED E	BY:	Т	. Yurma	n			RIG TYPE:			PAGE 1 of 1	
	ING	INE										
	IFR -			Safety	N Hammer	- semi-aut	omatic					
AUGE	R I.D)./O.	D.:	3.25	inch / NA	- Serii-dut	omatio	DRILL ROD O.D.: NM CORE BA			REL I.D./O.D. NA / NA	
DRILL	ING	ME	гнс	D: Ho	ollow-stem	Auger						
WATE	RLE	EVE	L DI	EPTHS	(ft): _Gro	undwater r	not encountere	ed				
ABBR	FVIA		NS	• Pen	= Penetratio	on Length		S = Split Spoon Sample		On = Pocket Penetrometer Strength	NA NM = Not Applicable, Not Measured	
				Rec.	= Recovery	Length	tion	C = Core Sample		Sv = Pocket Torvane Shear Strength	Blows per 6 in.: 140-lb hammer falling	
				WOF	= Length of	Sound Core	es>4 in / Pen.,%	SC = Sonic Core		PI = Plasticity Index	30 inches to drive a 2-inch-O.D. split spoon sampler.	
				WOF	t = Weight d	of Rods of Hammer		HSA = Hollow-Stem Auger		I.D./O.D. = Inside Diameter/Outside D	iameter	
				Sa	ample Inf	ormation			e			
Elev.						Don /	Plows	Drilling Remarks/	Nan			
(ft)	(f	t)	S	ample	Depth	Rec.	per 6 in.	Field Test Data	/er			
				NO.	(11)	(in)	or RQD		La			
-										3 in. ASPHALT		
	F									WIDELY-GRADED SAND W	d as: /ITH GRAVEL (SW); ~85% F-C	
	1									sand, ~10% F-gravel, ~5% N	NP fines, brown, dry to moist.	
-	1											
	F											
100												
190	<u> </u>	5										
-	L											
-	ſ		\backslash	S1	6 to	24/14	11-10-8-			S1: WIDELY-GRADED SAM	ND WITH GRAVEL (SW); ~75% F-C	
_	F		XI		8		11				intes, light readish brown, ary.	
i	F		$\left(\right)$		8					S2' WIDELY-GRADED SAN	D (SW): ~95% F-M sand (mostly	
-	L		V	S2	to 10	24/17	8-9-12-8		ND	M), ~5% NP fines, brown, m	oist.	
	-		\mathbb{N}		10				S¢			
-		10		S3	10	24/0	6-9-12-			S3: No recovery, assumed r	native sands to gravelly sands	
	F		XI		12		13					
-	1		/ \									
- 1	L											
-	ſ											
190-	F			54	14	21/0	13-17			S4: No recovery, assumed r	native sands to gravelly sands	
100-	\vdash	15	XI	04	to 16	24/0	11-12					
-	1		/									
-	-		\mathbb{N}	S5	16 to	24/12	9-12-14-			S5: WIDELY-GRADED SAN	ND (SW); ~90% F-sand, ~5% wn_moist	
_	F		ХI		18		15				,	
1	\vdash		4						-	Planned depth		
-	1									Backfilled with drill cuttings.		
-	$\left\{ \right.$											
-	F	20										
	╞											
	1											
-	1											
-	-											
								Ι				
NOTE	NOTES:								PRO. Sims	JECT NAME: Prospect-1263 Hop	omeadow St	
									CITY	STATE: Simsbury, Connecticut		
j									GEI F	PROJECT NUMBER: 2302394		

BORIN	BORING INFORMATION										
LOCA		See	plan.							BORING	
GROU		FA	CEEL.	(ft): 176	.5		DATE START/END: 6	/20/20	023 - 6/20/2023	R 10	
		1 (ft	wi:)∙ 60					- Glvr		B-10	
LOGG	ED BY:	T	. Yurma	in			RIG TYPE:	c Olyi		PAGE 1 of 1	
									_	FAGE 1 01 1	
DRILL	ING INF	ORI	MATION	1							
HAMN		E:	Safety	Hammer	- semi-aut	omatic	CASING I.D./O.D.: NA	V NA			
	R I.D./O.	D.:	<u>3.25</u>	inch / NA	Augor		DRILL ROD O.D.: <u>NM</u>		CORE BA	RREL I.D./O.D. <u>NA / NA</u>	
WATE			ю. <u>по</u> ЕРТНS	(ft): Gro	undwater i	not encounter	ed				
				(11)010							
ABBR	EVIATIC	NS	Pen. Rec. RQD	= Penetrati = Recovery = Rock Qu	on Length Length ality Designa	ation	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample		Qp = Pocket Penetrometer Strength Sv = Pocket Torvane Shear Strength LL = Liquid Limit	NA, NM = Not Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D.	
			WOF WOF	= Length of R = Weight c I = Weight c	of Rods of Hammer	s>4 in / Pen.,%	SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		split spoon sampler. Diameter		
			Sa	ample Inf	ormation			me			
Elev.	Depth	~			Pen./	Blows	Drilling Remarks/	Nai	Soil and	Rock Description	
(ft)	(ft) Sample Depth Rec. per 6 in. No. (ft) (in) or ROD			Field Test Data	lyer						
				(,	(in)	or RQD		La			
-	-								3 in. ASPHALT (0-2) Auger cuttings sample WIDELY-GRADED SAND V ~80% F-C sand. ~10% F-C	ed as: VITH SILT AND GRAVEL (SP); gravel. ~10% NP fines. brown, dry to	
	- S1 2 24/14 5-5-4-6					5-5-4-6		SAND	moist. S1: SILTY SAND (SM); ~65 F-gravel, brown, moist.	5% F-C sand, ~30% NP fines, ~5%	
		Ĥ	S2	4 to	24/19	4-4-6-8			S2: SILTY SAND (SM); ~80 F-gravel, brown, moist.	0% F-C sand, ∼15% NP fines, ~5%	
	- 5	Å		6					Planned denth		
	- -								Backfilled with drill cuttings.		
_ Q1	-										
	- 10										
	-										
	- -										
	15										
	F										
160-	1										
- 2	-										
-	F										
0700	-										
i L	- 20										
-	L										
- 1	Ē										
	╞										
2	F										
	L										
- 12	-										
NOTES	S:	<u> </u>				· · · · ·		PRO. Simsl	JECT NAME: Prospect-1263 Ho bury /STATE: Simsbury Connection	ppmeadow St	
								CITY/STATE: Simsbury, Connecticut GEI PROJECT NUMBER: 2302394			

BORIN	IG INFO	RMA	TION						BORING			
LOCA		See p	olan.	(ft): 175	9		DATE START/END.	DONING				
VERT	CAL DA	тим	'E E E.	(it). <u>175</u>	.0		DRILLING COMPANY:	Sea	board	B-11		
ΤΟΤΑ	L DEPTH	l (ft)	5.5				DRILLER NAME: Mil	e Glyr	าท			
LOGG	ED BY:	Τ.	Yurma	in			RIG TYPE:			PAGE 1 of 1		
HAMN		<u> </u>	Safety	• Hammer	- semi-aut	omatic	CASING I.D./O.D.: N	A/ NA	REL TYPE:			
AUGE	R I.D./O.	D.:	3.25	inch / NA			DRILL ROD O.D.: N	Λ	RREL I.D./O.DNA / NA			
DRILL	ING ME	гно	D: <u>Ho</u>	ollow-stem	Auger							
WATE	R LEVE	L DE	PTHS	(ft): Gro	undwater	not encountere	d					
ABBR	EVIATIC	NS:	Pen.	= Penetrati	on Length		S = Split Spoon Sample		Qp = Pocket Penetrometer Strength	NA, NM = Not Applicable, Not Measured		
			Rec. RQD WOF	= Recovery = Rock Qu = Length of R = Weight of I = Weight of	v Length ality Designa Sound Core of Rods of Hammer	ation es>4 in / Pen.,%	C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Sv = Pocket Torvane Shear Strength LL = Liquid Limit PI = Plasticity Index PID = Photoionization Detector LD /Q D = Inside Diameter/Outside F	Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.		
			Sa	ample Inf	ormation		HSA = Hollow-Stem Auger	e				
Elev.	Depth				Don /	Plows	Drilling Remarks/	Nam				
(ft)	(ft) Sample Depth Pen./ Blows (ft) Rec. per 6 in.			Field Test Data	yer	Soil and	Rock Description					
		'	NU.	(11)	(in)	or RQD		La				
_	_								3 in. ASPHALT (0-1.5) Auger cuttings samp SILTY SAND (SM): ~75% F	led as: -C sand. ~25% NP fines. brown. drv		
-	-	$\overline{\Lambda}$	S1	1.5	24/16	10-9-8-8				ID WITH GRAVEL (SW) ~80% F-C		
- 10	Ł	XI		3.5				AND	sand, ~15% F-gravel, ~5%	NP fines, brown, moist.		
_		$\left(\right)$		35				S	S2: Similar to S1: ~85% F-0	sand ~10% F-gravel ~5% NP		
	-	V	S2	to	24/18	13-12-			fines,			
- v	- 5	\wedge		5.5								
170-	-								Planned depth.			
									Backnilled with drill cutlings.			
	Γ											
	}											
- 5	-											
- 10	- 10											
_	4											
	Γ											
5	}											
-	+											
- 1	1											
2 -	45											
	- 15											
160-	-											
- 1	+											
-	-											
-												
2002	Γ											
	20											
-	+											
-	Ļ											
2												
	Γ											
-	1											
										pmoodow St		
	101E0.								bury			
								CITY/STATE: Simsbury, Connecticut				
5								GEIF	PROJECT NUMBER: 2302394			

BORI	NG INFC	RM	<u>ATION</u>							BORING
LOCA		See	plan.	(54). 476					000 6/00/0000	Bonno
VERT				(ft): <u>176</u>				Soc	023 - 6/20/2023	B-12
TOTA): 55				DRILLER NAME: Mil	e Glv	nn	D-12
LOGG	ED BY:	T	. Yurma	in			RIG TYPE:			PAGE 1 of 1
DRILL	ING INF		MATION	N						
		יב: חי	3 25	Hammer	- semi-aut	omatic		A/ NA 1		
DRILL	ING ME	 ТНС	DD: Ho	ollow-stem	Auger			/1		
WATE		LD	EPTHS	(ft): _Gro	oundwater	not encountere	d			
ABBR	EVIATIO	JNS	Rec. RQD WOF	= Penetration = Recovery = Rock Qu = Length of R = Weight of H = Weight of	on Length / Length ality Design: Sound Core of Rods of Hammer	ation es>4 in / Pen.,%	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		NA, NM = NOt Applicable, Not Measured Blows per 6 in.: 140-lb hammer falling 30 inches to drive a 2-inch-O.D. split spoon sampler.	
	Sample Information							ne		
Elev.	Depth				Pen /	Blows	Drilling Remarks/	Nar	Soil and	Pook Description
(ft)	(ft)	S	ample No	Depth (ft)	Rec.	per 6 in.	Field Test Data	yer		Rock Description
			110.	(11)	(in)	or RQD		La		
-								4 in. ASPHALT (0-1.5) Auger cuttings samp SILTY SAND (SM); ~80% F	led as: -C sand, ~20% NP fines, brown, dry	
- n	- G-1 1.5 24/24								to moist. G1: WIDELY-GRADED SAM	ND WITH GRAVEL (SW) [,] ~85% F-C
		B		3.5				AND	sand, ~10% F-gravel, ~5%	NP fines, brown, dry to moist.
			• •	35				l o	G2 [:] Similar to S1	
	Ť	in	G-2	to	24/24					
- -	- 5			0.0						
170-	+								Planned depth.	
									Backlined with drift cuttings.	
	Γ									
	t									
- 2	+									
- 20	- 10									
	t									
-	+									
	Ļ									
	15									
160-	+									
	+									
2	L									
	+									
- 1	- 20									
_	Ļ									
-	Ť									
-	+									
-	Ļ									
NOTE	NOTES:								JECT NAME: Prospect-1263 Ho	pmeadow St
									/STATE: Simsbury, Connecticu	
								GEI I	PROJECT NUMBER: 2302394	

Date:	4/9/2021
GEI Representative:	A. Hernberg
GS Elev.	196.0
Contractor:	Pierce Builders, Inc. / Bob
Equipment:	Deere 310SG Backhoe

ID	Depth	Description
	0 - 2.5"	ASPHALT.
	2.5" - 1'-8"	SILTY SAND (SM); ~75% mostly f sand, ~15% non-plastic fines, ~10% gravel and cobbles (up to 4"), light brown, damp. Possible fill.
<u>TP1</u>	1'-8" - 3'	NARROWLY GRADED SAND WITH SILT (SW-SM); ~90% mostly f sand, ~10% fines, light brown, damp.
	3' - 5'	WIDELY GRADED SAND (SW); 93.5% f-c sand, 5.0% f gravel (up to 1/2"), 1.5% fines, light brown,
	5' - 7'-3"	WIDELY GRADED SAND WITH GRAVEL (SW); 73.9% f-c sand, 24.5% f-c gravel (up to 3"), 1.6% fines, light brown, moist. Contains seams/pockets of f sand throughout.
	7'-3" - 7'-6"	NARROWLY GRADED SAND (SP); ~95% f sand, ~5% fines, light brown, moist.

- <u>Notes:</u> 1. Test Pit Dimensions: 7.5' x 2.5' x 7.5' (deep).
- 2. Groundwater was not encountered.

Date:	4/9/2021
GEI Representative:	A. Hernberg
GS Elev.	184.5
Contractor:	Pierce Builders, Inc. / Bob
Equipment:	Deere 310SG Backhoe

ID	Depth	Description
	0 - 3"	ASPHALT.
	211 11 11	WIDELY GRADED GRAVEL WITH SILT AND SAND (GW-GM); ~50% f-c gravel (up to 3"), ~40% f-c
TDA	3" - 1'-1"	sand, ~10% low-plasticity fines, red-brown, damp, contains organic fibers. Possible fill.
<u>1P2</u>	11 11 61 61	NARROWLY GRADED SAND (SP); ~95% f sand, ~5% fines, brown to light brown (banded) to 4', light
	1-1 - 0-0	brown 4-6.5', damp to moist. Color bands 1/16"-1" thick.
	6'-6" - 8'	SILTY SAND (SM); ~60% f sand, ~40% non-plastic fines, light brown, moist.

Notes:

Test Pit Dimensions: 7.5' x 3' x 8' (deep).
 Groundwater was not encountered.

4/9/2021
A. Hernberg
196.0
Pierce Builders, Inc. / Bob
Deere 310SG Backhoe

ID	Depth	Description
	0 - 2"	ASPHALT.
	211 911	SILTY SAND WITH GRAVEL (SM); ~50% f-c sand, ~30% f-c gravel and cobbles (up to 4"), ~20% low-
	2 - 8	plasticity fines, gray-brown, damp. Possible fill.
	011 41 611	NARROWLY GRADED SAND (SP); 97.5% f sand, 1.1% f gravel (up to 1/2"), 1.4% fines, light brown,
трз	8 - 4 - 0	moist.
<u>115</u>	1. 6. 6. 0.	WIDELY GRAVED SAND WITH GRAVEL (SW); ~70% f-c sand, ~30% f-c gravel and cobbles (up to
	4-0 - 0-9	5"), light brown, moist.
	6'0" 7'5"	NARROWLY GRADED SAND WITH SILT (SP-SM); ~90% f sand, ~10% non-plastic fines, light brown,
	0-9 - 7-3	moist.
	7'-5" - 8'-6"	SILTY SAND (SM); ~70% f sand, ~30% non-plastic fines, light brown, moist.

- <u>Notes:</u> 1. Test Pit Dimensions: 8' x 3' x 8.5' (deep). 2. Groundwater was not encountered.

Date:	4/9/2021
GEI Representative:	A. Hernberg
GS Elev.	194.5
Contractor:	Pierce Builders, Inc. / Bob
Equipment:	Deere 310SG Backhoe

ID	Depth	Description
	0 - 2.5"	ASPHALT.
	2.5" - 1'-2"	SILTY SAND WITH GRAVEL (SM); ~60% f-c sand, ~20% f-c gravel (up to 3"), ~20% low-plasticity fines, gray-brown, damp. Contains small (~3" diameter) pockets of dark gray silt sand with organic fibers. FILL.
<u>TP4</u>	1'-2" - 3'-3"	NARROWLY GRADED SAND WITH SILT (SP-SM); ~85% f sand, ~10% non-plastic fines, ~5% f gravel, dark brown 1'-2" to 2', brown 2'-3'-3", moist.
	3'-3" - 5'-6"	WIDELY GRAVED SAND WITH GRAVEL (SW); 51.8% f-c sand, 46.7% f-c gravel (up to 3"), 1.5% fines, light brown, moist.
	5'-6" - 7'-6"	NARROWLY GRADED SAND (SP); ~90% f sand, ~5% f gravel (up to 1/4"), ~5% fines, light brown, moist.

- Notes: 1. Test Pit Dimensions: 8' x 3' x 7.5' (deep).
- 2. Groundwater was not encountered.

Date:	4/9/2021
GEI Representative:	A. Hernberg
GS Elev.	193.0
Contractor:	Pierce Builders, Inc. / Bob
Equipment:	Deere 310SG Backhoe

ID	Depth	Description
	0 - 2.5"	ASPHALT.
TD5	2.5" - 8"	SILTY SAND WITH GRAVEL (SM); ~60% f-c sand, ~20% f-c gravel (up to 2"), ~20% low-plasticity
		fines, gray-brown, damp. FILL.
<u>1175</u> 811 61 611		SILTY SAND (SM); ~85% f sand, ~15% low-plasticity fines, brown, moist. Contains trace f gravel.
	8 - 0 -0	Pockets of roots to ~5' deep, roots typically less than 1/4" diameter. Possible fill.
	6'-6" - 8'	NARROWLY GRADED SAND (SP); ~95% f sand, ~5% fines, light brown, moist.

Notes: 1. Test Pit Dimensions: 8' x 3' x 8' (deep).

2. Groundwater was not encountered.

1263 Hopmeadow Street, Simsbury, CT GEI Proj # 2302394- 1.1 Soil Permeability Calculations

FT

Soil Classification:

WELL CALCULATION		
$k'_{v} = \frac{d^{2}(\frac{\pi}{11}\frac{k'_{v}}{k_{v}}\frac{D}{m} + L}{D^{2}(t_{2} - t_{1})}$	$\frac{H_1}{H_2}$	("S
TEST LOCATION	B-10A	
Length of Casing	152.4	
Diameter, stone pack	13.335	[
Diam., casing	5.08	(
Test Length	30.5	I
Transformation ratio	1	
k'v/kv	1	As

Soil in casing in uniform soil," Lambe and Whitman, 1969.) Depth of Test 4.0 (cm) GS Elevation 176.5 D (cm) d (cm) Depth to GW 17 L (cm) m ssumed

SILTY SAND (SM); ~80% F-C sand, ~15% NP fines, ~5% F gravel, brown, dry.

Test 1			
Donth to Water (am)	Time	Vertical Perm.	Vertical Perm.
Depth to Water (cm)	t	k'v (cm/sec)	k'v (in/hr)
1.91	0		
3.18	30	8.47E-02	120.09
5.08	60	7.80E-02	110.49
5.72	90	1.95E-02	27.69
6.35	120	1.75E-02	24.77
7.62	150	3.02E-02	42.86
8.26	180	1.33E-02	18.82
9.53	210	2.37E-02	33.64
10.16	240	1.07E-02	15.17
10.80	270	1.01E-02	14.25
11.43	300	9.48E-03	13.44
12.07	360	4.48E-03	6.36
13.21	420	7.51E-03	10.64
13.97	480	4.65E-03	6.59
16.26	600	6.28E-03	8.91
18.42	720	5.17E-03	7.33
19.56	840	2.50E-03	3.54
25.40	1200	3.61E-03	5.12
		AVERAGE	5 22

<u>Test 2</u>

AVERAGE

	Time		
Depth to Water (cm)	t	Vertical Perm.	Vertical Perm.
	(seconds)	k'v (cm/sec)	k'v (in/hr)
0.00	0		
0.32	30	#NUM!	#NUM!
0.64	60	1.15E-01	162.95
1.59	90	1.52E-01	215.41
1.59	120	0.00E+00	0.00
1.91	150	3.02E-02	42.86
2.22	180	2.56E-02	36.24
2.54	210	2.21E-02	31.39
2.54	240	0.00E+00	0.00
3.81	300	3.36E-02	47.66
4.45	360	1.28E-02	18.12
5.08	420	1.11E-02	15.70
5.72	480	9.77E-03	13.84
6.99	600	8.32E-03	11.79
8.26	720	6.93E-03	9.82
9.21	840	4.53E-03	6.42
12.70	1200	4.45E-03	6.30
		AVERAGE	6.36

AVERAGE

FT

WELL CALCULATION

WELL CALCULATION		
$k'_{v} = \frac{d^{2}(\frac{\pi}{11}\frac{k'_{v}}{k_{v}}\frac{D}{m} + l)}{D^{2}(t_{2} - t_{1})}$	$\frac{H_1}{H_2}$ ln $\frac{H_1}{H_2}$	("Soil in ca
TEST LOCATION	B-11A	
Length of Casing	152.4	(cm)
Diameter, stone pack	8.89	D (cm)
Diam., casing	5.08	d (cm)
Test Length	30.5	L (cm)
Transformation ratio	1	m
k'v/kv	1	Assumed
Soil Classification:		WIDELY G
		011E0/E

pil in casing in uniform soil," Lambe and Whitman, 1969.) Depth of Test 2.6 cm) GS Elevation 175.8 (cm) (cm) Depth to GW > 17 ft (cm) m

DELY GRADED SAND WITH GRAVEL (GW); ~80% F-C sand, 15% F- gravel, ~5% NP fines, brown, moist.

Test 1

Dopth to Water (am)	Time	Vertical Perm.	Vertical Perm.
Depth to water (cm)	t	k'v (cm/sec)	k'v (in/hr)
3.81	0		
9.53	30	3.29E-01	466.73
13.34	60	1.21E-01	171.39
15.24	90	4.80E-02	68.02
17.78	120	5.54E-02	78.52
18.54	150	1.51E-02	21.38
20.32	180	2.40E-02	34.01
22.86	240	2.12E-02	30.00
26.52	300	2.67E-02	37.80
28.96	360	1.58E-02	22.40
36.27	480	2.02E-02	28.68
41.76	600	1.27E-02	17.94
		AVERAGE	23.01

Test 2

	Time		
Depth to Water (cm)	t	Vertical Perm.	Vertical Perm.
	(seconds)	k'v (cm/sec)	k'v (in/hr)
0.00	0		
2.54	30		
5.08	60	2.49E-01	353.07
7.62	90	1.46E-01	206.53
10.16	120	1.03E-01	146.54
12.70	150	8.02E-02	113.66
14.61	180	5.02E-02	71.19
19.05	240	4.77E-02	67.67
25.40	300	5.17E-02	73.27
28.58	360	2.12E-02	30.00
40.01	480	3.02E-02	42.85
49.53	600	1.92E-02	27.20
		AVERAGE	33.35

FT

WELL CALCULATION

WELL CALCULATION		
$k'_{v} = \frac{d^{2}(\frac{\pi}{11}\frac{k'_{v}}{k_{v}}\frac{D}{m} + L}{D^{2}(t_{2} - t_{1})}$	$\frac{H_1}{H_2}$ ln $\frac{H_1}{H_2}$	(".
TEST LOCATION	B-12A	
Length of Casing	152.4	
Diameter, stone pack	8.89	
Diam., casing	5.08	
Test Length	30.5	
Transformation ratio	1	
k'v/kv	1	A
Soil Classification:		W

'Soil in casing in uniform soil," Lambe and Whitman, 1969.) Depth of Test 2.6 (cm) D (cm) GS Elevation 176.0 d (cm) Depth to GW > 17 ft L (cm)

m ssumed

/IDELY GRADED SAND WITH GRAVEL (GW); ~85% F-C sand, ~10% F- gravel, ~5% NP fines, light brown, moist.

Test 1

Donth to Water (am)	Time	Vertical Perm.	Vertical Perm.
Depth to water (cm)	t	k'v (cm/sec)	k'v (in/hr)
0.00	0		
5.08	30		
10.80	60	2.71E-01	383.95
16.51	90	1.53E-01	216.42
20.96	120	8.57E-02	121.44
26.04	150	7.80E-02	110.57
30.48	180	6.73E-02	95.43
39.37	240	4.60E-02	65.18
46.99	300	3.18E-02	45.06
55.25	360	2.91E-02	41.22
67.95	480	1.86E-02	26.35
77.47	600	1.18E-02	16.71
		AVERAGE	21.53

Test 2

	Time		
Depth to Water (cm)	t	Vertical Perm.	Vertical Perm.
	(seconds)	k'v (cm/sec)	k'v (in/hr)
0.00	0		
4.45	30		
8.26	60	2.22E-01	315.32
12.70	90	1.55E-01	219.43
16.51	120	9.43E-02	133.64
20.96	150	8.57E-02	121.44
24.77	180	6.00E-02	85.09
31.75	240	4.46E-02	63.28
38.10	300	3.28E-02	46.43
44.45	360	2.77E-02	39.26
55.25	480	1.95E-02	27.69
64.77	600	1.43E-02	20.26
		AVERAGE	23.97

FEMA Floodway Map

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Appendix C:

Site/Block BMP Selection Matrix Water Quality Unit Sizing Recharge Calculations StormCAD: Schematic StormCAD: Conduit Table StormCAD: Structure Table

Site/Block BMP Selection Matrix (Town of Simsbury)

Revision-2: September 28, 2011

Simsbury Stormwater Article

Table 1.3: Site/Block BMP Selection Matrix											
	SC-1	SC-2	SC-3	SC-4	SC-5	CIV	OS	Other Zones	TSS	TP	TN
PAVING											
Compacted Earth									~	-	-
Crushed Stone/Shell									-	-	-
Standard Asphalt/Concrete Pavement									-	-	-
Pavers/Brick									-	•••	-
Grassed Cellular Plastic/Concrete									-	-	~
Permeable Pavement ¹							Sin and		90%	40%	40%
CONVEYANCE											
Stone/Riprap Swale											
Vegetated Bioswale									90%	30%	55%
Pipe ²									-	~	
Shallow Stone/Cobble Channel									-	-	-
Shallow Masonry Trough									~	•••	-
Engineered Sculpted Watercourse									-	-	~
RATE/VOLUME					<u> </u>						
Dry Extended Detention Basin ³									50%	20%	25%
Wet Extended Detention Basin ³									80%	52%	31%
Special Detention Area									varies	varies	varies
Rain Barrel/Cistern									-	-	~
Stormwater Harvesting for Irrigation						A sheri (s.)			~	-	-
Stormwater Harvesting for Building Uses							n/a		-	-	-
Underground Infiltration Trench/Drywel									90%	55%	40%
Underground Vault/Pipe/Cistern									20%	15%	5%
WATER QUALITY ⁴	ł					-					
Wet Vegetated System	1								85%	48%	30%
Gravel Vegetated System	1								86%	53%	55%
Organic/Sand Filter	r								86%	59%	32%
Bioretention	1								90%	30%	55%
Roof Downspout Disconnection	1						n/a		varies	varies	varie
Tree Box Filte	r dége se								90%	30%	55%
Green Roo	f						n/a		90%	30%	55%
Flow-through Plante	r								90%	30%	55%
Forebay/Vegetated Filter Pretreatmen	t								25%	-	-
Grass Channel Pretreatmen	t								70%	24%	40%
Deep Sump Catch Basin Pretreatmen	t								25%	-	-
Proprietary Hydrodynamic Device	s								25%		

Encouraged

Allowed

Not allowed without Town Engineer approval

72% Median Pollutant Removal Efficiency (Percent)

- No treatment -
- ND No data

Water Quality Unit Sizing

Project:	Proposed Commercial Dev	Project #	42810.00
Location:	Simsbury, Connecticut	Sheet	1 of 1
Calculated by:	KE	Date:	2/10/2023
Checked by:		Date:	
Title	Water Quality Flow Calculations		

WQU-1			
Area Impervious:	2.671	Acres	
Total Area [A]:	4.174	Acres	
I:	64.00	%	
R:	0.63		
WQV:	0.22	Ac-ft	
Q:	0.63	Inches	
CN:	96		if >98, use 98
Ρ:	1.00	inch	for water quality storms
la:	0.083		get from table 4-1, TR-55
Tc:	5.00	minutes	
q u:	700.00		get from exhibit 4-11, TR-55
WQF:	2.86	CFS	ANSWER

Recharge Calculations

Recharge Calculations

Proj. No.:	42810.0	
Date:	2/21/2023	
Calculated by:	KE	
Checked by:	RS	
	Proj. No.: Date: Calculated by: Checked by:	Proj. No.: 42810.0 Date: 2/21/2023 Calculated by: KE Checked by: RS

Proposed Impervious Surface Summary

50% of Net Proposed Impervious Areas by Hydrologic Soil Group (HSG) in acres

Subcatchment	HSG A	HSG B	HSG C	HSG D	Total Area
TOTAL	0.00	1.33	0.0	0.0	1.3

Recharge Volume per Simsbury Stormwater Guidelines (Cubic Feet)

HSG	Area Recharge Depth *		Volume
	(acres)	(inches)	(c.f.)
Α	0.0	0.660	0
В	1.3	0.385	1,855
С	0.0	0.275	0
D	0.0	0.110	0
TOTAL			1,855

* Depth rate reflects 110% Per Town of Simsbury Recharge Requirements

Provided Recharge Volume (Cubic Feet)

Volumes provided are storage at the 2-year storm events (See HydroCAD Report)

Rain Garden	413	
2р	1,263	
3P	218	
Total	1,894	c.f

StormCAD: Schematic

StormCAD: Conduit Table (25-year Storm Event)

FlexTable: Conduit Table

Start	Stop	Invert	Invert	Length	Slope	Velocity	Diameter	Flow	Capacity	Flow /	Cover	Cover	Hydraulic	Hydraulic
Node	Node	(Start)	(Stop)	(Scaled)	(Calculated)	(ft/s)	(in)	(cfs)	(Full Flow)	Capacity	(Start)	(Stop)	Grade Line	Grade Line
		(ft)	(ft)	(ft)	(ft/ft)				(cfs)	(Design)	(ft)	(ft)	(In)	(Out)
										(%)			(ft)	(π)
100	101	184.70	183.50	107.1	0.011	4.33	12.0	1.27	3.77	33.8	2.50	2.50	185.18	184.24
101	102	183.50	183.00	89.7	0.006	3.83	12.0	2.37	2.66	89.2	2.50	3.00	184.24	183.79
102	103	183.00	181.90	124.3	0.009	4.86	12.0	3.25	3.35	96.8	3.00	4.10	183.79	182.73
103	106	181.90	181.20	41.6	0.017	6.57	12.0	3.79	4.62	82.1	4.10	2.80	182.73	182.18
106	109	181.20	179.10	47.4	0.044	10.88	12.0	7.29	7.50	97.2	2.80	2.80	182.18	179.92
119	122	175.60	175.40	41.5	0.005	1.53	6.0	0.07	0.39	19.2	2.30	3.00	175.79	175.78
120	125	173.80	171.80	139.6	0.014	7.78	18.0	9.23	12.57	73.4	2.10	1.70	174.97	172.75
125	EX-CB	171.00	170.50	17.3	0.029	11.44	18.0	16.01	17.87	89.6	2.50	2.50	172.43	171.74
104	105	184.70	184.00	88.5	0.008	3.78	12.0	1.22	3.17	38.6	2.50	2.50	185.17	184.60
105	121	184.00	182.90	59.7	0.018	5.85	12.0	1.99	4.84	41.1	2.50	3.60	184.60	183.72
108	109	179.00	178.60	77.0	0.005	2.80	12.0	0.72	2.57	28.0	2.50	3.30	179.75	179.72
123	124	174.50	174.00	87.9	0.006	3.48	12.0	1.44	2.69	53.5	2.70	2.50	175.02	174.51
124	125	173.60	172.00	41.4	0.039	7.95	12.0	2.26	7.01	32.2	2.90	2.00	174.24	172.39
110	111	176.00	174.20	82.3	0.022	5.02	12.0	0.91	5.27	17.3	2.00	2.50	176.40	174.80
111	112	174.20	173.60	110.6	0.005	3.57	12.0	1.74	2.62	66.5	2.50	3.30	174.80	174.29
112	115	173.60	173.10	100.1	0.005	3.58	12.0	2.06	2.52	81.7	3.30	3.20	174.29	173.97
113	114	175.30	173.50	91.5	0.020	5.02	12.0	1.04	5.00	20.7	2.50	2.50	175.73	174.11
109	120	178.60	173.80	124.5	0.039	10.99	15.0	8.21	12.68	64.7	3.05	2.35	179.72	174.97
117	118	172.10	171.55	41.0	0.013	6.75	15.0	5.86	7.48	78.4	1.50	1.75	173.08	172.71
118	125	171.55	171.00	85.2	0.006	5.38	18.0	7.37	8.44	87.3	1.50	2.50	172.71	172.43
115	117	173.10	172.10	29.3	0.034	8.89	12.0	4.22	6.58	64.1	3.20	1.75	173.97	173.08
122	123	175.40	174.50	46.6	0.019	4.67	12.0	0.83	4.95	16.7	2.50	2.70	175.78	175.02
126	127	177.00	175.90	51.4	0.021	4.85	12.0	0.82	5.21	15.8	3.00	4.40	177.38	176.17
114	115	173.50	173.20	24.6	0.012	5.04	12.0	2.01	3.93	51.2	2.50	3.10	174.11	173.97
107	106	181.50	181.20	30.8	0.010	2.65	12.0	0.27	3.52	7.6	2.50	2.80	182.18	182.18
130	124	174.90	174.50	17.0	0.023	3.84	12.0	0.33	5.46	6.0	2.10	2.00	175.14	174.67
116	117	172.90	172.10	92.6	0.009	3.04	12.0	0.50	3.31	15.1	1.60	1.75	173.19	173.08
121	106	182.90	181.20	51.9	0.033	8.48	12.0	3.68	6.45	57.0	3.60	2.80	183.72	182.18
132	121	183.10	182.90	7.0	0.029	6.59	12.0	1.71	6.01	28.4	3.90	3.60	183.66	183.72

StormCAD: Structure Table

Structure Table

Label	Elevation (Rim) (ft)		
100	188.20		
101	187.00		
102	187.00		
103	187.00		
104	188.20		
105	187.50		
106	185.00		
107	185.00		
108	182.50		
109	182.90		
110	179.00		
111	177.70		
112	177.90		
113	178.80		
114	177.00		
115	177.30		
116	175.50		
117	174.85		
118	174.55		
119	178.40		
120	177.40		
121	187.5		
122	178.9		
123	178.2		
124	177.5		
125	175.0		
126	181.0		
130	178.0		
132	188.0		

Appendix D:

Erosion and Sedimentation Control Measures

Erosion and Sedimentation Control Measures

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor.

Silt Fencing

Silt fence sill be installed around the limit of work as shown on the plans. In areas where high runoff velocities or high sediment loads are expected, straw barriers will be installed up-gradient of silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and hay bale barrier will be replaced as determined by periodic field inspections.

Catch Basin Protection

Newly constructed and existing catch basins will be protected with silt sacks throughout construction.

Gravel and Construction Entrance/Exit

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

Vegetative Slope Stabilization

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after

permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

Maintenance

- The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.
- The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.
- Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.
- > Damaged or deteriorated items will be repaired immediately after identification.
- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.
- Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be regraded and stabilized as necessary.

The sedimentation and erosion control plan is included in project plan set; a reduced version and Erosion Control Maintenance checklist is included here for quick reference.

Construction Best Management Practices - Maintenance/Evaluation Checklist

Proposed Commercial Development– Simsbury, CT – 1263 Hopmeadow Street Best Management Practices – Maintenance/ Evaluation Checklist

Construction Practices

Best Management	Inspection	Date		Minimum Maintenance	Cleaning/Repair Needed	Date of	Performed
Practice	Frequency	Inspected	Inspector	and Key Items to Check	yes no (List Items)	Cleaning/Repair	by
Silt Fencing	Once per week						
	or after a 1" or						
	greater storm						
	event						
Catch Basin	Once per week						
Protection	or after a 1" or						
	greater storm						
	event						
Stabilized	Once per week						
Construction Exit	or after a 1" or						
	greater storm						
	event						
Temporary	Once per week						
Sediment Basin	or after a 1" or						
	greater storm						
	event						
Vegetated Slope	Once per week						
Stabilization	or after a 1" or						
	greater storm						
	event						

Stormwater Control Manager _____

Appendix E:

Long Term Stormwater Operation and Maintenance Measures

Project Information

Site

Project Name:	Proposed Commercial Development
Address or Locus:	200 Hopmeadow Street
City, State & Zip:	Simsbury, CT

Developer

Client Name:	Р
Client Address:	2
Client City, State & Zip:	F
Client Telephone No.:	(8
Client Cell Phone:	
Client E-Mail:	g

Prospect Enterprises, LLC

231 Farmington Avenue

Farmington, CT 06032

(860) 249-2242 Ext 102

g.nanni@theprospectco.com

Site Supervisor

Site Manager Name:	
Site Manager Address:	
Site Manager City, State & Zip:	
Site Manager Telephone No.:	
Site Manager Cell Phone:	
Site Manager E-Mail:	

Long Term Stormwater Maintenance Measures –

Per the Town of Simsbury, a 5-year period of yearly reporting of inspections/maintenance for the drainage system shall be submitted to the Planning Department.

The following maintenance program is proposed to ensure the continued effectiveness of the structural water quality controls previously described:

- Inspect stormwater basins once annually, in the spring, for cracking or erosion of side slopes, embankments, and accumulated sediment. Necessary sediment removal, earth repair, and/or reseeding will be performed immediately upon identification.
- Inspect sediment traps/forebays monthly for erosion of side slopes and accumulated sediment. Necessary sediment removal, earth repair and/or reseeding shall be performed immediately upon identification. Clean traps/ forebays approximately four times per year or as needed.
- Clean all catch basins once annually to remove accumulated sand, sediment, and floatable products or as needed based on use.
- > Paved areas will be swept, at a minimum, two (2) times per year.
- Routinely pick up and remove litter from the parking areas, islands and perimeter landscape areas in addition to regular pavement sweeping.
- Routinely inspect all dumpster and compactor locations for spills. Remove all trash litter from the enclosure and dispose of properly.

Pavement Systems

Standard Asphalt Pavement

- Sweep or vacuum standard asphalt pavement areas at least two times per year with a commercial cleaning unit and properly dispose of removed material.
- > Recommended sweeping schedule:
 - > Oct/Nov
 - > Apr/May
- More frequent sweeping of paved surfaces will result in less accumulation in catch basins, less cleaning of subsurface structures, and less disposal costs.
- Check dumpster areas frequently for spillage and/or pavement staining and clean as necessary.

Structural Stormwater Management Devices

Catch Basins

- All catch basins shall be inspected and cleaned a minimum of at least once per year.
- Sediment (if more than six inches deep) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.
- Any structural damage or other indication of malfunction will be reported to the site manager and repaired as necessary
- > During colder periods, the catch basin grates must be kept free of snow and ice.
- During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.

Subsurface Infiltration Systems

- The subsurface infiltration systems will be inspected at least once each year by removing the manhole/access port covers and determining the thickness of sediment that has accumulated in the sediment removal row.
- If sediment is more than six inches deep, it must be suspended via flushing with clean water and removed using a vactor truck.
- Manufacturer's specifications and instructions for cleaning the sediment removal row should be consulted.
- Emergency overflow pipes will be examined at least once each year and verified that no blockage has occurred.
- > System will be observed after rainfalls to see if it is properly draining.

Structural Water Quality Devices

- FOLLOW MANUFACTURER'S INSTRUCTIONS ON O&M REQUIREMENTS AND METHODOLOGY
- > Inspect devices monthly for the first three months after construction.
- After initial three month period, all water quality units are to be inspected at least four times per year and cleaned a minimum of at least once per year or when sediment reaches 8" in depth.
- Follow manufacturer instructions for inspection and cleaning and contact manufacturer if system is malfunctioning.

Stormwater Outfalls

 Inspect outfall locations monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.

- > Inspect outfalls annually after initial three month period.
- Annual inspections should be supplemented after large storms, when washouts may occur.
- > Maintain vegetation around outfalls to prevent blockages at the outfall.
- > Maintain rip rap pad below each outfall and replace any washouts.
- > Remove and dispose of any trash or debris at the outfall.

Roof Drain Leaders

- > Perform routine roof inspections quarterly.
- > Keep roofs clean and free of debris.
- Keep roof drainage systems clear.
- > Keep roof access limited to authorized personnel.
- > Clean inlets draining to the subsurface bed twice per year as necessary.

Vegetated Stormwater Management Devices

Infiltration Basin

Initial Post-Construction Inspection

 Infiltration basins should be inspected after every major storm for the first few months to ensure proper stabilization and function.

Long-Term Maintenance

- The grass on the side slopes should be mowed, and grass clippings, organic matter, and accumulated trash and debris removed, at least twice during the growing season.
- Eroded or barren spots should be reseeded immediately after inspection to prevent additional erosion and accumulation of sediment.
- Sediment should be removed from the basin as necessary. Removal procedures should not take place until the floor of the basin is thoroughly dry.

Inspections and Cleaning

- Basins should be inspected at least once a year to ensure proper stabilization and function.
- Light equipment, which will not compact the underlying soil, should be used to remove the top layer.

Vegetated Areas Maintenance

Although not a structural component of the drainage system, the maintenance of vegetated areas may affect the functioning of stormwater management practices. This includes the health/density of vegetative cover and activities such as the

application and disposal of lawn and garden care products, disposal of leaves and yard trimmings.

- > Inspect planted areas on a semi-annual basis and remove any litter.
- > Maintain planted areas adjacent to pavement to prevent soil washout.
- > Immediately clean any soil deposited on pavement.
- Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.
- Plant alternative mixture of grass species in the event of unsuccessful establishment.
- > The grass vegetation should be cut to a height between three and four inches.

Long Term Best Management Practices Checklist

Proposed Commercial Development– Simsbury, CT – 1263 Hopmeadow Street

Best Management Practices – Maintenance/ Evaluation Checklist

Long Term Practices

Best	Inspection Frequency	Date	Inspector	Minimum Maintenance and	Cleaning/Repair Needed	Date of	Performed
Management		Inspected		Key Items to Check	yes no (List Items)	Cleaning/Repair	by
Practice							
Street	2x per year, preferably in late spring						
Sweeping	and late fall.						
Trash/Litter	Routinely pick up and remove litter						
	from entire property as required.						
Catch Basins	Inspect annually. Clean annually or						
	when sediment is greater than 6".						
Hydrodynamic	CHECK SPECIFIC						
Water Quality	MANUFACTURER'S INSTRUCTIONS						
Unit	ON O&M REQUIREMENTS AND						
	METHODOLOGY. Recommendation:						
	Inspect monthly for first 3 months.						
	Inspect 4x per year and clean at least 1x						
	per year or when sediment reaches 8".						
Dumpster	Routinely inspect all dumpster and						
Location	compactor locations for spills. Remove						
	all trash litter from the enclosure and						
	dispose of properly.						
Rain Garden	Inspect after every major storm for the						
	first 3 months. Side slopes and buffer						
	shall be mowed/trash removed at least						
	twice during growing season						
Underground	Inspect after every major storm for the						
Infiltration	first 3 months. Inspect at least once per						
Systems	year thereafter.						
Roof Drains	Inspect quarterly for cleanliness and						
	debris-free.						
Vegetated	Inspect bi-annually.						
Areas	Replant bare areas upon identification.						
Outfalls	Inspect monthly for the first 3 months.						
	Inspect at least once per year thereafter.						

Stormwater Control Manager _____

Appendix F: Hydrologic Analysis

HydroCAD Analysis: Existing Conditions

Printed 2/21/2023 Page 2

Rainfall Events Listing

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
 1	2-YEAR	Type III 24-hr		Default	24.00	1	3.28	2
2	10-YEAR	Type III 24-hr		Default	24.00	1	5.28	2
3	25-YEAR	Type III 24-hr		Default	24.00	1	6.53	2
4	50-YEAR	Type III 24-hr		Default	24.00	1	7.44	2
5	100-YEAR	Type III 24-hr		Default	24.00	1	8.45	2

Printed 2/21/2023 Page 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.055	69	50-75% Grass cover, Fair, HSG B (1)
0.358	61	>75% Grass cover, Good, HSG B (1)
3.688	98	Paved parking, HSG B (1)
0.869	58	Woods/grass comb., Good, HSG B (1)
4.969	88	TOTAL AREA

42810.00 - EX

Prepared by VHB HydroCAD® 10.10-7c s/n 01038 © 2022 HydroCAD Software Solutions LLC Printed 2/21/2023 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
4.969	HSG B	1
0.000	HSG C	
0.000	HSG D	
0.000	Other	
4.969		TOTAL AREA

42810.00 - EX	
Prepared by VHB	Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038 © 2022 HydroCAD Software Solutions LLC	Page 5
	-

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.055	0.000	0.000	0.000	0.055	50-75% Grass cover, Fair	1
0.000	0.358	0.000	0.000	0.000	0.358	>75% Grass cover, Good	1
0.000	3.688	0.000	0.000	0.000	3.688	Paved parking	1
0.000	0.869	0.000	0.000	0.000	0.869	Woods/grass comb., Good	1
0.000	4.969	0.000	0.000	0.000	4.969	TOTAL AREA	

42810.00 - EX	
Prepared by VHB	Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038 © 2022 HydroCAD Software Solutions LLC	Page 6
Pipe Listing (all nodes)	

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1	0.00	0.00	235.0	0.0208	0.011	0.0	12.0	0.0

Time span=0.00-30.00 hrs, dt=0.02 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site

Runoff Area=4.969 ac 74.21% Impervious Runoff Depth=2.07" Flow Length=811' Tc=23.8 min CN=88 Runoff=7.53 cfs 0.857 af

Link DP-1: Hopmeadow

Inflow=7.53 cfs 0.857 af Primary=7.53 cfs 0.857 af

Total Runoff Area = 4.969 ac Runoff Volume = 0.857 af Average Runoff Depth = 2.07" 25.79% Pervious = 1.282 ac 74.21% Impervious = 3.688 ac

Summary for Subcatchment 1: Site

[47] Hint: Peak is 124% of capacity of segment #6

Runoff	=	7.53 cfs @	12.33 hrs,	Volume=
Route	d to L	ink DP-1 : Hopm	neadow	

0.857 af, Depth= 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

Area	(ac) C	N Des	cription		
0.	055 6	69 50-7	5% Grass	cover, Fair	, HSG B
0.	358 6	61 >75 ⁹	% Grass co	over, Good	, HSG B
3.	688 9	8 Pave	ed parking	, HSG B	
0.	869 5	58 Woo	ds/grass c	omb., Goo	d, HSG B
4	969 8	8 Weid	ahted Aver	ade	·
1	282	25.7	9% Pervio	us Area	
	688	74.2	1% Impen	vious Area	
0.	000	1 1.2		10007100	
Тс	l enath	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.1	50	0.0100	0.05	()	Sheet Flow
10.1	00	0.0100	0.00		Woods: Light underbrush $n=0.400$ P2= 3.28"
16	48	0 0100	0.50		Shallow Concentrated Flow
1.0	-10	0.0100	0.00		Woodland $Ky = 5.0 \text{ fps}$
22	242	0 0085	1 87		Shallow Concentrated Flow
2.2	272	0.0000	1.07		Paved $K_{V} = 20.3$ fps
02	40	0 3000	2 74		Shallow Concentrated Flow
0.2	-0	0.0000	2.14		Woodland Ky= 5.0 fps
30	106	0.0/10	1 01		Shallow Concentrated Flow
5.2	190	0.0410	1.01		Woodland Ky= 5.0 fps
0.5	225	0 0200	7 72	6.07	Dina Channal
0.5	255	0.0200	1.15	0.07	12.0" Dound Aroon 0.9 of Dorime 2.11 re 0.25
					12.0 Roully Alea- 0.0 St Pellill- 3.1 1- 0.23
	<u>.</u>	- · ·			n– 0.011 Concrete pipe, straight & clean
23.8	811	l otal			

Subcatchment 1: Site

	EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr 2-YEAR Rainfall=3.28'
Prepared by VHB	Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038 © 2022 HydroCAD Software Soluti	ions LLC Page 10

Summary for Link DP-1: Hopmeadow

Inflow Area	a =	4.969 ac, 7	4.21% Impe	rvious, Inflo	ow Depth =	2.07"	for 2-YEAR event
Inflow	=	7.53 cfs @	12.33 hrs,	Volume=	0.857	af	
Primary	=	7.53 cfs @	12.33 hrs,	Volume=	0.857	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs

Link DP-1: Hopmeadow

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	10-YEAR Rainfall=5.28"
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038	© 2022 HydroCAD Software Solutions LLC	Page 11

Time span=0.00-30.00 hrs, dt=0.02 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SiteRunoff Area=4.969 ac74.21% ImperviousRunoff Depth=3.94"Flow Length=811'Tc=23.8 minCN=88Runoff=14.05 cfs1.630 af

Link DP-1: Hopmeadow

Inflow=14.05 cfs 1.630 af Primary=14.05 cfs 1.630 af

Total Runoff Area = 4.969 ac Runoff Volume = 1.630 af Average Runoff Depth = 3.94" 25.79% Pervious = 1.282 ac 74.21% Impervious = 3.688 ac

Summary for Subcatchment 1: Site

[47] Hint: Peak is 231% of capacity of segment #6

Runoff	=	14.05 cfs @	12.32 hrs,	Volume=
Route	d to L	ink DP-1 : Hopm	neadow	

1.630 af, Depth= 3.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

Area	(ac) C	N Des	cription		
0.	055 6	69 50-7	5% Grass	cover, Fair	, HSG B
0.3	358 6	61 >75 ⁹	% Grass co	over, Good	, HSG B
3.	688 9	8 Pave	ed parking	, HSG B	
0.8	869 5	58 Woo	ds/grass c	omb., Goo	d, HSG B
4.9	969 8	8 Weid	ahted Aver	ade	·
1	282	25.7	9% Pervio	us Area	
	688	74.2	1% Impen	vious Area	
0.	000	1 1.2		10007100	
Тс	l enath	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.1	50	0.0100	0.05	()	Sheet Flow
10.1	00	0.0100	0.00		Woods: Light underbrush $n=0.400$ P2= 3.28"
16	48	0 0100	0.50		Shallow Concentrated Flow
1.0	-10	0.0100	0.00		Woodland $Ky=5.0$ fps
22	242	0 0085	1 87		Shallow Concentrated Flow
2.2	272	0.0000	1.07		Paved $K_{V} = 20.3$ fps
0.2	40	0 3000	2 74		Shallow Concentrated Flow
0.2	-0	0.0000	2.14		Woodland Ky= 5.0 fps
3.2	106	0.0/10	1 01		Shallow Concentrated Flow
5.2	190	0.0410	1.01		Woodland Ky= 5.0 fps
0.5	225	0 0200	7 72	6.07	Dina Channal
0.5	200	0.0200	1.13	0.07	$\begin{array}{c} \textbf{Fipe Onlander}, \\ 12.0^{"} \text{ Pound Areas } 0.9 \text{ of Porims } 2.1^{"} \text{ rm} = 0.25^{"} \end{array}$
					12.0 Routiu Alea- 0.0 SI Petitii- 3.1 1- 0.23
					n– 0.011 Concrete pipe, straight & clean
23.8	811	līotal			

Subcatchment 1: Site

Page 13

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	10-YEAR Rainfall=5.28"
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038 © 2	022 HydroCAD Software Solutions LLC	Page 14

Summary for Link DP-1: Hopmeadow

Inflow Are	ea =	4.969 ac, 7	4.21% Impe	ervious,	Inflow Depth =	3.9	94" for 10-YEAR event
Inflow	=	14.05 cfs @	12.32 hrs,	Volume	= 1.630	af	
Primary	=	14.05 cfs @	12.32 hrs,	Volume	= 1.630	af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs

Link DP-1: Hopmeadow

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	25-YEAR Rainfall=6.53"
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038	© 2022 HydroCAD Software Solutions LLC	Page 15

Time span=0.00-30.00 hrs, dt=0.02 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SiteRunoff Area=4.969 ac74.21% ImperviousRunoff Depth=5.14"Flow Length=811'Tc=23.8 minCN=88Runoff=18.14 cfs2.127 af

Link DP-1: Hopmeadow

Inflow=18.14 cfs 2.127 af Primary=18.14 cfs 2.127 af

Total Runoff Area = 4.969 ac Runoff Volume = 2.127 af Average Runoff Depth = 5.14" 25.79% Pervious = 1.282 ac 74.21% Impervious = 3.688 ac

Summary for Subcatchment 1: Site

[47] Hint: Peak is 299% of capacity of segment #6

Runoff	=	18.14 cfs @	12.31 hrs,	Volume=
Route	d to Li	ink DP-1 : Hopm	eadow	

2.127 af, Depth= 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

Area	(ac) C	N Des	cription						
0.	055 6	69 50-7	5% Grass	cover, Fair	, HSG B				
0.358 61 >75% Grass cover, Good, HSG B									
3.688 98 Paved parking, HSG B									
0.869 58 Woods/grass comb., Good, HSG B									
4 969 88 Weighted Average									
1 282 25 79% Pervious Area									
3	688	74.2	1% Impen	vious Area					
0.	000	1 1.2							
Тс	l enath	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
16.1	50	0.0100	0.05	(/	Sheet Flow				
10.1	00	0.0100	0.00		Woods: Light underbrush $n=0.400$ P2= 3.28"				
16	48	0 0100	0.50		Shallow Concentrated Flow				
1.0	-10	0.0100	0.00		Woodland $Ky = 5.0$ fps				
22	242	0 0085	1 87		Shallow Concentrated Flow				
2.2	272	0.0000	1.07		Paved $K_{V} = 20.3$ fps				
0.2	40	0 3000	2 74		Shallow Concentrated Flow				
0.2	-0	0.0000	2.14		Woodland Ky= 5.0 fps				
30	106	0.0410	1 01		Shallow Concentrated Flow				
5.2	190	0.0410	1.01		Woodland Ky= 5.0 fps				
0.5	225	0 0200	7 72	6.07	Pine Channel				
0.5	255	0.0200	1.15	0.07	12.0" Dound Aroos 0.9 of Dorims 2.11 rs 0.25				
					12.0 Roully Alea- 0.0 SI Pelilii- 3.1 1- 0.25				
	.				n= 0.011 Concrete pipe, straight & clean				
23.8	811	līotal							

Subcatchment 1: Site

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	25-YEAR Rainfall=6.53"
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038 ©	2022 HydroCAD Software Solutions LLC	Page 18

Summary for Link DP-1: Hopmeadow

Inflow Ar	rea =	4.969 ac, 7	4.21% Impervious,	Inflow Depth =	5.14" for	25-YEAR event
Inflow	=	18.14 cfs @	12.31 hrs, Volume	e= 2.127	af	
Primary	=	18.14 cfs @	12.31 hrs, Volume	e= 2.127	af, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs

Link DP-1: Hopmeadow

Time span=0.00-30.00 hrs, dt=0.02 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SiteRunoff Area=4.969 ac74.21% ImperviousRunoff Depth=6.02"Flow Length=811'Tc=23.8 minCN=88Runoff=21.09 cfs2.494 af

Link DP-1: Hopmeadow

Inflow=21.09 cfs 2.494 af Primary=21.09 cfs 2.494 af

Total Runoff Area = 4.969 ac Runoff Volume = 2.494 af Average Runoff Depth = 6.02" 25.79% Pervious = 1.282 ac 74.21% Impervious = 3.688 ac
Summary for Subcatchment 1: Site

[47] Hint: Peak is 347% of capacity of segment #6

Runoff	=	21.09 cfs @	12.31 hrs,	Volume=
Route	d to Li	nk DP-1 : Hopm	neadow	

2.494 af, Depth= 6.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

Area	(ac) C	N Des	cription					
0.	055 6	69 50-7	5% Grass	cover, Fair	, HSG B			
0.	0.358 61 >75% Grass cover, Good, HSG B							
3.	688 9	8 Pave	ed parking	, HSG B				
0.	0.869 58 Woods/grass comb., Good, HSG B							
4.	4.969 88 Weighted Average							
1	1 282 25 79% Pervious Area							
3	688	74.2	1% Impen	vious Area				
0.	000	1 1.2		10007100				
Тс	l enath	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
16.1	50	0.0100	0.05	()	Sheet Flow			
10.1	00	0.0100	0.00		Woods: Light underbrush $n=0.400$ P2= 3.28"			
16	48	0 0100	0.50		Shallow Concentrated Flow			
1.0	-10	0.0100	0.00		Woodland $Ky = 5.0$ fps			
22	242	0 0085	1 87		Shallow Concentrated Flow			
2.2	272	0.0000	1.07		Paved $K_{V} = 20.3$ fps			
0.2	40	0 3000	2 74		Shallow Concentrated Flow			
0.2	-0	0.0000	2.14		Woodland Ky= 5.0 fps			
30	106	0.0410	1 01		Shallow Concentrated Flow			
5.2	190	0.0410	1.01		Woodland Ky= 5.0 fps			
0.5	225	0 0200	7 72	6.07	Pine Channel			
0.5	255	0.0200	1.15	0.07	12.0" Dound Aroos 0.9 of Dorims 2.11 rs 0.25			
					12.0 Roully Alea- 0.0 SI Pelilii- 3.1 1- 0.25			
	.				n= 0.011 Concrete pipe, straight & clean			
23.8	811	「otal						

Subcatchment 1: Site

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	50-YEAR Rainfall=7.44'
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038	© 2022 HydroCAD Software Solutions LLC	Page 22

Summary for Link DP-1: Hopmeadow

Inflow Are	a =	4.969 ac, 7	4.21% Impervious,	Inflow Depth =	6.02" for 50-`	YEAR event
Inflow	=	21.09 cfs @	12.31 hrs, Volume	e= 2.494 a	af	
Primary	=	21.09 cfs @	12.31 hrs, Volume	e= 2.494 a	af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs

Link DP-1: Hopmeadow

		EXISTING CONDITIONS
42810.00 - EX	Type III 24-hr	100-YEAR Rainfall=8.45"
Prepared by VHB		Printed 2/21/2023
HydroCAD® 10.10-7c s/n 01038	© 2022 HydroCAD Software Solutions LLC	Page 23

Time span=0.00-30.00 hrs, dt=0.02 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: SiteRunoff Area=4.969 ac74.21% ImperviousRunoff Depth=7.01"Flow Length=811'Tc=23.8 minCN=88Runoff=24.38 cfs2.902 af

Link DP-1: Hopmeadow

Inflow=24.38 cfs 2.902 af Primary=24.38 cfs 2.902 af

Total Runoff Area = 4.969 ac Runoff Volume = 2.902 af Average Runoff Depth = 7.01" 25.79% Pervious = 1.282 ac 74.21% Impervious = 3.688 ac

Summary for Subcatchment 1: Site

[47] Hint: Peak is 401% of capacity of segment #6

Runoff	=	24.38 cfs @	12.31 hrs,	Volume=
Route	d to Li	nk DP-1 : Hopm	eadow	

2.902 af, Depth= 7.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

Area ((ac) C	N Dese	cription				
0.0	055 6	69 50-7	5% Grass	cover. Fair	: HSG B		
0.3	358 6	61 >75 ⁰	% Grass co	over, Good	, HSG B		
3.0	688 9	8 Pave	ed parking	, HSG B	, ,		
0.8	869 5	58 Woo	ds/grass d	omb., Goo	d, HSG B		
4.9	969 8	8 Weid	ahted Aver	ade			
1.2	1.282 25.79% Pervious Area						
3.0	688	74.2	1% Imperv	/ious Area			
			•				
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·		
16.1	50	0.0100	0.05		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.28"		
1.6	48	0.0100	0.50		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
2.2	242	0.0085	1.87		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
0.2	40	0.3000	2.74		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
3.2	196	0.0410	1.01		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.5	235	0.0208	7.73	6.07	Pipe Channel,		
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'		
					n= 0.011 Concrete pipe, straight & clean		
23.8	811	Total					

Subcatchment 1: Site

	EXISTING CC	DNDITIONS
42810.00 - EX	Type III 24-hr 100-YEAR Ra	infall=8.45"
Prepared by VHB	Printed	2/21/2023
HydroCAD® 10.10-7c s/n 01038 © 20	22 HydroCAD Software Solutions LLC	Page 26

Summary for Link DP-1: Hopmeadow

Inflow Area	a =	4.969 ac, 7	4.21% Impervious,	Inflow Depth = 7	.01" for 100-YEAR event
Inflow	=	24.38 cfs @	12.31 hrs, Volume	= 2.902 at	
Primary	=	24.38 cfs @	12.31 hrs, Volume	e 2.902 at	i, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.02 hrs

Link DP-1: Hopmeadow

HydroCAD Analysis: Proposed Conditions

42810.00 - PR	
Prepared by VHB, Inc	
HydroCAD® 10.20-3c s/n 01038	© 2023 HydroCAD Software Solutions LLC

Printed 8/21/2023 Page 2

Rainfall Events Listing

	Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
_		Name				(hours)		(inches)	
	1	2-YEAR	Type III 24-hr		Default	24.00	1	3.28	2
	2	10-YEAR	Type III 24-hr		Default	24.00	1	5.28	2
	3	25-YEAR	Type III 24-hr		Default	24.00	1	6.53	2
	4	50-YEAR	Type III 24-hr		Default	24.00	1	7.44	2
	5	100-YEAR	Type III 24-hr		Default	24.00	1	8.45	2

42810.00 - PR	
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solutions LLC	Page 3

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
98	(2A)
61	>75% Grass cover, Good, HSG B (1, 2)
98	Unconnected pavement, HSG B (1, 3, 4)
82	TOTAL AREA
	ON 98 61 98 82

42810.00 - PR Prepared by VHB. Inc

Prepared by VHB, Inc HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solutions LLC Printed 8/21/2023 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
212,056	HSG B	1, 2, 3, 4
0	HSG C	
0	HSG D	
4,356	Other	2A
216,412		TOTAL AREA

I2810.00 - PR Prepared by VHI HydroCAD® 10.20-	B, Inc 3c_s/n 01038_©	F	Printed 8/21/2023 Page 5			
		Ground	Covers (all n	odes)		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
0	0	0	0	4,356	4,356	
0	90,788	0	0	0	90,788	>75% Grass
						cover, Good
0	121,268	0	0	0	121,268	Unconnected
						pavement
0	212,056	0	0	4,356	216,412	TOTAL AREA

Su Nu

42810.00 - PR	_	-		_
Prepared by VHB, Inc		Pri	nted	8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solutions LLC				Page 6
				-

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill	Node
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	Name
1	1	0.00	0.00	430.0	0.0220	0.011	0.0	12.0	0.0	
2	1	0.00	0.00	158.0	0.0200	0.011	0.0	18.0	0.0	
3	1P	172.90	172.10	86.0	0.0093	0.013	0.0	12.0	0.0	

	PROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr 2-YEAR Rainfall=3.28"
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software S	Solutions LLC Page 7

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site	Runoff Area=4.141 ac 59.52% Impervious Runoff Depth=1.68" Flow Length=774' Tc=18.1 min CN=83 Runoff=5.70 cfs 25,180 cf
Subcatchment2: South Pervious	Runoff Area=0.408 ac 0.00% Impervious Runoff Depth=0.48" Tc=5.0 min CN=61 Runoff=0.16 cfs 707 cf
Subcatchment2A: South Restaurant	Runoff Area=0.100 ac 100.00% Impervious Runoff Depth=3.05" Tc=5.0 min CN=98 Runoff=0.33 cfs 1,106 cf
Subcatchment3: Retail Bldg	Runoff Area=0.266 ac 100.00% Impervious Runoff Depth=3.05" Tc=5.0 min CN=98 Runoff=0.88 cfs 2,946 cf
Subcatchment4: North Restaurant	Runoff Area=0.053 ac 100.00% Impervious Runoff Depth=3.05" Tc=5.0 min CN=98 Runoff=0.17 cfs 583 cf
Pond 1P: Infiltration Basin Discarded	Peak Elev=174.43' Storage=447 cf Inflow=0.47 cfs 1,813 cf =0.08 cfs 1,813 cf Primary=0.00 cfs 0 cf Outflow=0.08 cfs 1,813 cf
Pond 2P: Underground Detention Discar	Peak Elev=176.08' Storage=0.005 af Inflow=0.17 cfs 583 cf ded=0.02 cfs 583 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 583 cf
Pond 3P: Underground Detention Discarded=	Peak Elev=185.41' Storage=0.029 af Inflow=0.88 cfs 2,946 cf 0.05 cfs 2,905 cf Primary=0.02 cfs 41 cf Outflow=0.07 cfs 2,946 cf
Link DP-1: Hopmeadow	Inflow=5.70 cfs 25,221 cf Primary=5.70 cfs 25,221 cf
Total Punoff Area = 216 4	12 cf Bunoff Volume - 30 522 cf Average Bunoff Denth - 4 6

Total Runoff Area = 216,412 sf Runoff Volume = 30,522 cf Average Runoff Depth = 1.69" 41.95% Pervious = 90,788 sf 58.05% Impervious = 125,624 sf

Summary for Subcatchment 1: Site

Runoff = 5.70 cfs @ 12.25 hrs, Volume= Routed to Link DP-1 : Hopmeadow

25,180 cf, Depth= 1.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

A	rea	(ac) C	N Des	cription		
	1.	676 6	61 >75	% Grass c	over, Good	, HSG B
	2.	465 9	98 Unc	onnected p	pavement, l	HSG B
	4.	141 8	33 Weig	ghted Aver	age	
	1.	676	40.4	8% Pervio	us Area	
	2.	465	59.5	2% Imperv	∕ious Area	
	2.	465	100.	00% Uncc	nnected	
	-		0		0	
1	IC	Length	Slope	Velocity	Capacity	Description
(m	nin)	(feet)	(ft/ft)	(ft/sec)	(CIS)	
1	5.9	35	0.0200	0.04		Sheet Flow,
	~ 1	00	0 0000	7.00		Woods: Dense underbrush n= 0.800 P2= 3.28"
	0.1	33	0.2000	7.20		Shallow Concentrated Flow,
	0 0	110	0.0474	1.00		Unpaved KV= 16.1 fps
	0.9	110	0.0171	1.90		Grassed Waterway, Ky= 15.0 fpc
	0 0	8	0.0625	5 08		Shallow Concentrated Flow
	0.0	0	0.0025	5.00		Paved $K_{V} = 20.3$ fps
	09	430	0 0220	7 95	6 25	Pipe Channel RCP Round 12"
	0.0	100	0.0220	1.00	0.20	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011 Concrete pipe, straight & clean
	0.3	158	0.0200	9.93	17.56	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.011
1	8.1	774	Total			

Hydrograph Runoff 6-5.70 cfs Type III 24-hr 2-YEAR Rainfall=3.28" 5-Runoff Area=4.141 ac Runoff Volume=25,180 cf 4 Runoff Depth=1.68" Flow (cfs) Flow Length=774' 3-Tc=18.1 min **CN=83** 2-1 0-9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 2 3 4 5 6 7 8 1 0

Subcatchment 1: Site

Summary for Subcatchment 2: South Pervious

Runoff = 0.16 cfs @ 12.10 hrs, Volume= Routed to Pond 1P : Infiltration Basin 707 cf, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

	Area	(ac)	CN	Desc	ription				
	0.4	408	61	>75%	6 Grass co	over, Good	, HSG B		
0.408 100.00% Pervious Area									
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	5.0		-				Direct Entry,		

Subcatchment 2: South Pervious

Summary for Subcatchment 2A: South Restaurant

Runoff = 0.33 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : Infiltration Basin 1,106 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

Summary for Subcatchment 3: Retail Bldg

Runoff = 0.88 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Underground Detention 2,946 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

Area	(ac) CN	Deso	cription		
0.	.266 98	3 Unco	onnected p	pavement, l	HSG B
0. 0.	266 266	100. 100.	00% Impe 00% Unco	rvious Area	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,
			S	Subcatch	nment 3: Retail Bldg
				Hydro	ograph
0.95-					·
0.9-				- + -	Type III 24-hr
0.85		- - + - - - + -			2-YFAR Rainfall=3.28"
0.75-					$\mathbf{R}_{\mathbf{n}} = \mathbf{R}_{\mathbf{n}} + $
0.65-					Runoff Volume=2 946 cf
0.6- 20.55-		- + - - + -			====2,5=0,0=1
0.5-			- $ +$ $ +$ $+$		
<u>0</u> 0.45- <u>1</u> 0.4-					·
0.35-					CN=98
0.3-		-i	\neg $ \neg$ $ \neg$ $ \neg$ $ \neg$ $ \neg$ $ \neg$		
0.25-		- +-	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$	+ -	
0.2-			$\neg + +$		
0.15-			$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1}$		
0.1-	/				
0.05-					
0-	0 1 2 3	4 5 6	7 8 9 10	0 11 12 13 14 Tim	ne (hours)

Summary for Subcatchment 4: North Restaurant

Runoff = 0.17 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Underground Detention 583 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=3.28"

Area (ac)	CN	Desc	cription						
0.053	3 98 Unconnected pavement, HSG B								
0.053		100.	00% Impe	rvious Area	3				
0.053		100.0	00% Unco	nnected					
Tc Leng (min) (fee	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				
			<u> </u>						

Subcatchment 4: North Restaurant

Summary for Pond 1P: Infiltration Basin

22,128 sf, 19.69% Impervious, Inflow Depth = 0.98" for 2-YEAR event Inflow Area = 0.47 cfs @ 12.08 hrs, Volume= Inflow = 1.813 cf 0.08 cfs @ 12.60 hrs, Volume= 1,813 cf, Atten= 83%, Lag= 31.3 min Outflow = 0.08 cfs @ 12.60 hrs, Volume= Discarded = 1,813 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 174.43' @ 12.60 hrs Surf.Area= 1,187 sf Storage= 447 cf

Plug-Flow detention time= 38.6 min calculated for 1,813 cf (100% of inflow) Center-of-Mass det. time= 38.6 min (854.3 - 815.7)

Volume	Inver	t Avai	I.Storage	Storage Description	on		
#1	174.00)'	4,584 cf	Custom Stage Da	ata (Irregular)Liste	ed below (Recalc)	
Elevatio (feet 174.0 175.0 176.0 176.3	n S t) 0 0 0	Surf.Area (sq-ft) 880 1,655 3,161 3 300	Perim. (feet) 160.0 263.0 430.0 440.0	Inc.Store (cubic-feet) 0 1,247 2,368 969	Cum.Store (cubic-feet) 0 1,247 3,615 4 584	Wet.Area (sq-ft) 880 4,354 13,570 14 274	
Device	Routina	ln	vert Outle	et Devices	1,001	,	
#1	Device 3	175	.20' 19.4 Limi	" x 36.0" Horiz. Or ted to weir flow at lo	ifice/Grate C= 0	.600	
#2 #3	Discarded Primary	l 174 172	.00' 3.00 .90' 12.0 L= 8 Inlet n= 0	0 in/hr Exfiltration " Round Culvert 6.0' CMP, mitered / Outlet Invert= 172 .013 Corrugated P	over Surface are to conform to fill, 2.90' / 172.10' S= E, smooth interior	ea Phase-In= 0.01' Ke= 0.700 0.0093 '/' Cc= 0.900 Flow Area= 0.79 sf	

Discarded OutFlow Max=0.08 cfs @ 12.60 hrs HW=174.43' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=174.00' (Free Discharge)

-3=Culvert (Passes 0.00 cfs of 2.58 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs)

Page 14

Pond 1P: Infiltration Basin

Summary for Pond 2P: Underground Detention

Page 16

2,297 sf,100.00% Impervious, Inflow Depth = 3.05" for 2-YEAR event Inflow Area = 0.17 cfs @ 12.07 hrs, Volume= Inflow = 583 cf 0.02 cfs @ 11.33 hrs, Volume= 583 cf, Atten= 91%, Lag= 0.0 min Outflow = Discarded = 0.02 cfs @ 11.33 hrs, Volume= 583 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 176.08' @ 12.90 hrs Surf.Area= 0.005 ac Storage= 0.005 af

Plug-Flow detention time= 90.6 min calculated for 583 cf (100% of inflow) Center-of-Mass det. time= 90.5 min (845.5 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	174.40'	0.004 af	4.83'W x 45.92'L x 2.33'H Field A
			0.012 af Overall - 0.002 af Embedded = 0.010 af x 40.0% Voids
#2A	174.90'	0.002 af	ADS_StormTech SC-310 +Cap x 6 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
		0.006 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	174.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	174.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	176.23'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.02 cfs @ 11.33 hrs HW=174.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=174.40' (Free Discharge) -1=Orifice/Grate (Controls 0.00 cfs)

3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 2P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

6 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 43.92' Row Length +12.0" End Stone x 2 = 45.92' Base Length 1 Rows x 34.0" Wide + 12.0" Side Stone x 2 = 4.83' Base Width

6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

6 Chambers x 14.7 cf = 88.5 cf Chamber Storage

517.9 cf Field - 88.5 cf Chambers = 429.4 cf Stone x 40.0% Voids = 171.8 cf Stone Storage

Chamber Storage + Stone Storage = 260.2 cf = 0.006 af Overall Storage Efficiency = 50.2% Overall System Size = 45.92' x 4.83' x 2.33'

6 Chambers 19.2 cy Field 15.9 cy Stone

Pond 2P: Underground Detention

Summary for Pond 3P: Underground Detention

Printed 8/21/2023

Page 19

11,600 sf,100.00% Impervious, Inflow Depth = 3.05" for 2-YEAR event Inflow Area = 0.88 cfs @ 12.07 hrs, Volume= Inflow = 2.946 cf 0.07 cfs @ 13.00 hrs, Volume= 2,946 cf, Atten= 92%, Lag= 56.0 min Outflow = Discarded = 0.05 cfs @ 10.43 hrs, Volume= 2,905 cf Primary = 0.02 cfs @ 13.00 hrs, Volume= 41 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 185.41' @ 13.00 hrs Surf.Area= 0.015 ac Storage= 0.029 af

Plug-Flow detention time= 215.1 min calculated for 2,945 cf (100% of inflow) Center-of-Mass det. time= 215.1 min (970.0 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	182.40'	0.015 af	11.00'W x 60.58'L x 3.50'H Field A
			0.054 af Overall - 0.017 af Embedded = 0.037 af x 40.0% Voids
#2A	182.90'	0.017 af	ADS_StormTech SC-740 +Cap x 16 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			16 Chambers in 2 Rows
		0.032 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	182.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	182.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	185.40'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.05 cfs @ 10.43 hrs HW=182.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.02 cfs @ 13.00 hrs HW=185.41' (Free Discharge) -1=Orifice/Grate (Passes 0.02 cfs of 5.37 cfs potential flow) -1=Orifice/Grate (Passes 0.02 cfs of 5.37 cfs potential flow)

Pond 3P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

16 Chambers x 45.9 cf = 735.0 cf Chamber Storage

2,332.2 cf Field - 735.0 cf Chambers = 1,597.2 cf Stone x 40.0% Voids = 638.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,373.9 cf = 0.032 af Overall Storage Efficiency = 58.9%Overall System Size = $60.58' \times 11.00' \times 3.50'$

16 Chambers 86.4 cy Field 59.2 cy Stone

Pond 3P: Underground Detention

Summary for Link DP-1: Hopmeadow

Inflow Are	ea =	216,412 sf, 58.05% Imperv	vious, Inflow Depth = 1	.40" for 2-YEAR event
Inflow	=	5.70 cfs @ 12.25 hrs, Volu	me= 25,221 cf	
Primary	=	5.70 cfs @ 12.25 hrs, Volu	me= 25,221 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link DP-1: Hopmeadow

	P	ROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr	10-YEAR Rainfall=5.28"
Prepared by VHB, Inc		Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solution	ons LLC	Page 23

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site	Runoff Area=4.141 ac 59.52% Impervious Runoff Depth=3.43" Flow Length=774' Tc=18.1 min CN=83 Runoff=11.66 cfs 51,538 cf
Subcatchment2: South Pervious	Runoff Area=0.408 ac 0.00% Impervious Runoff Depth=1.54" Tc=5.0 min CN=61 Runoff=0.71 cfs 2,281 cf
Subcatchment2A: South Restaurant	Runoff Area=0.100 ac 100.00% Impervious Runoff Depth=5.04" Tc=5.0 min CN=98 Runoff=0.54 cfs 1,831 cf
Subcatchment3: Retail Bldg	Runoff Area=0.266 ac 100.00% Impervious Runoff Depth=5.04" Tc=5.0 min CN=98 Runoff=1.43 cfs 4,875 cf
Subcatchment4: North Restaurant	Runoff Area=0.053 ac 100.00% Impervious Runoff Depth=5.04" Tc=5.0 min CN=98 Runoff=0.28 cfs 965 cf
Pond 1P: Infiltration Basin Discarde	Peak Elev=175.14' Storage=1,486 cf Inflow=1.24 cfs 4,112 cf d=0.13 cfs 4,112 cf Primary=0.00 cfs 0 cf Outflow=0.13 cfs 4,112 cf
Pond 2P: Underground Detention Discard	Peak Elev=176.31' Storage=0.005 af Inflow=0.28 cfs 965 cf ed=0.02 cfs 775 cf Primary=0.24 cfs 190 cf Outflow=0.26 cfs 965 cf
Pond 3P: Underground Detention Discarded=0.	Peak Elev=185.63' Storage=0.030 af Inflow=1.43 cfs 4,875 cf 05 cfs 3,517 cf Primary=1.28 cfs 1,358 cf Outflow=1.33 cfs 4,875 cf
Link DP-1: Hopmeadow	Inflow=12.34 cfs 53,086 cf Primary=12.34 cfs 53,086 cf

Total Runoff Area = 216,412 sf Runoff Volume = 61,490 cf Average Runoff Depth = 3.41" 41.95% Pervious = 90,788 sf 58.05% Impervious = 125,624 sf

Summary for Subcatchment 1: Site

[47] Hint: Peak is 187% of capacity of segment #5

Runoff	=	11.66 cfs @	12.25 hrs,	Volume=
Route	d to Li	nk DP-1 : Hopm	eadow	

51,538 cf, Depth= 3.43"

Page 24

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

Area	(ac) C	N Des	cription				
1.	1.676 61 >75% Grass cover, Good, HSG B						
2.	.465 9	98 Unc	onnected p	pavement, l	HSG B		
4.141 83 Weighted Average							
1.676 40.48% Pervious Area							
2.	.465	59.5	2% Imperv	∕ious Area			
2.	.465	100.	00% Unco	nnected			
_				•	– 1 <i>– 1</i>		
	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15.9	35	0.0200	0.04		Sheet Flow,		
					Woods: Dense underbrush n= 0.800 P2= 3.28"		
0.1	33	0.2000	7.20		Shallow Concentrated Flow,		
	440	0.0474	4.00		Unpaved Kv= 16.1 fps		
0.9	110	0.0171	1.96		Shallow Concentrated Flow,		
0.0	0	0.0605	E 00		Grassed waterway KV= 15.0 tps		
0.0	8	0.0625	5.08		Shallow Concentrated Flow,		
0.0	120	0 0000	7.05	6 25	Paveu RV-20.3 Ips Ding Channel BCD Bound 12"		
0.9	430	0.0220	7.95	0.25	12.0" Round Area = 0.8 sf Perim = 3.1' r = 0.25'		
					n=0.011 Concrete nine straight & clean		
0.3	158	0 0200	9 93	17 56	Pine Channel		
0.0	100	0.0200	0.00	17.00	18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'		
					n= 0.011		
10.1	774	Total			··· ···		

18.1 774 Total

Subcatchment 1: Site

Summary for Subcatchment 2: South Pervious

Runoff = 0.71 cfs @ 12.08 hrs, Volume= Routed to Pond 1P : Infiltration Basin 2,281 cf, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

Area (ac) CN	Description				
0.408 61	>75% Grass cover, Good, HSG B				
0.408	100.00% Pervious Area				
Tc Length S (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)				
5.0	Direct Entry,				

Subcatchment 2: South Pervious

Summary for Subcatchment 2A: South Restaurant

Runoff = 0.54 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : Infiltration Basin

0.05

1,831 cf, Depth= 5.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

	Area ((ac)	CN	Des	cription		
*	0.	100	98		-		
	0.	100		100.	00% Impe	rvious Area	1
	Tc (min)	Len (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry,
					Subc	catchmen	t 2A: South Restaurant
						Hydro	graph
	-						
	0.55					0.54 cfs	Type III 24-hr
	0.5						10-YEAR Bainfall=5.28"
	0.45						$\mathbf{D}_{\mathbf{T}} = \mathbf{D}_{\mathbf{T}} $
	0.4						
	⊙ 0.35	/+ / /					Runoπ Volume=1,831 ct
	jj) ∧ 0.3						
	و 0.25				$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$		- ;;- ;- ;- ;- ;- ;- ;- ; Tc=5,0 ¦min-
	0.2	/ /			$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;- ;-
	0 15		 				
	0.13	, L	 				

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Subcatchment 3: Retail Bldg

Runoff = 1.43 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Underground Detention 4,875 cf, Depth= 5.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

Summary for Subcatchment 4: North Restaurant

Runoff = 0.28 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Underground Detention 965 cf, Depth= 5.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=5.28"

Area	(ac)	CN	Desc	cription				 	
0.	053	98	Unco	onnected p	oavement, l	HSG B			
0.	053	100.00% Impervious Area							
0.	0.053 100.00% Unconnected								
Tc (min)	Lengt (fee	h t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0						Direct Entry,			

Subcatchment 4: North Restaurant

Summary for Pond 1P: Infiltration Basin

Page 30

22,128 sf, 19.69% Impervious, Inflow Depth = 2.23" for 10-YEAR event Inflow Area = 1.24 cfs @ 12.08 hrs, Volume= Inflow = 4.112 cf 0.13 cfs @ 13.02 hrs, Volume= 4,112 cf, Atten= 90%, Lag= 56.3 min Outflow = 0.13 cfs @ 13.02 hrs, Volume= Discarded = 4,112 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 175.14' @ 13.02 hrs Surf.Area= 1,833 sf Storage= 1,486 cf

Plug-Flow detention time= 116.7 min calculated for 4,112 cf (100% of inflow) Center-of-Mass det. time= 116.7 min (930.2 - 813.5)

Volume	Invei	rt Avai	I.Storage	Storage Descriptio	n			
#1	174.00)'	4,584 cf	Custom Stage Da	i ta (Irregular) Liste	d below (Recalc)		
Elevatio (fee	n S t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
174.0	0	880	160.0	0	0	880		
175.0	0	1,655	263.0	1,247	1,247	4,354		
176.0	0	3,161	430.0	2,368	3,615	13,570		
176.3	0	3,300	440.0	969	4,584	14,274		
Device	Routing	In	vert Outle	et Devices				
#1	Device 3	175	.20' 19.4 Limit	" x 36.0" Horiz. Or ted to weir flow at lo	ifice/Grate C= 0. w heads	600		
#2	#2 Discarded		.00' 3.00	000 in/hr Exfiltration over Surface area Phase-In= 0.01'				
#3	#3 Primary		.90' 12.0	0" Round Culvert				
	,		L= 8	6.0' CMP, mitered	to conform to fill,	Ke= 0.700		
			Inlet	/ Outlet Invert= 172	2.90'/172.10' S=	0.0093 '/' Cc= 0.900		
			n= 0	.013 Corrugated Pl	E, smooth interior,	Flow Area= 0.79 st		

Discarded OutFlow Max=0.13 cfs @ 13.02 hrs HW=175.14' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=174.00' (Free Discharge)

-**3=Culvert** (Passes 0.00 cfs of 2.58 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs)

Pond 1P: Infiltration Basin

Summary for Pond 2P: Underground Detention

2,297 sf,100.00% Impervious, Inflow Depth = 5.04" for 10-YEAR event Inflow Area = 0.28 cfs @ 12.07 hrs, Volume= Inflow = 965 cf 0.26 cfs @ 12.11 hrs, Volume= Outflow = 965 cf, Atten= 9%, Lag= 2.6 min Discarded = 0.02 cfs @ 10.43 hrs, Volume= 775 cf Primary = 0.24 cfs @ 12.11 hrs, Volume= 190 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 176.31' @ 12.11 hrs Surf.Area= 0.005 ac Storage= 0.005 af

Plug-Flow detention time= 83.3 min calculated for 965 cf (100% of inflow) Center-of-Mass det. time= 83.3 min (829.5 - 746.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	174.40'	0.004 af	4.83'W x 45.92'L x 2.33'H Field A
			0.012 af Overall - 0.002 af Embedded = 0.010 af x 40.0% Voids
#2A	174.90'	0.002 af	ADS_StormTech SC-310 +Cap x 6 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
		0.006 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	174.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	174.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	176.23'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.02 cfs @ 10.43 hrs HW=174.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.23 cfs @ 12.11 hrs HW=176.31' (Free Discharge) -1=Orifice/Grate (Passes 0.23 cfs of 3.60 cfs potential flow)

3=Broad-Crested Rectangular Weir (Weir Controls 0.23 cfs @ 0.77 fps)

Pond 2P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

6 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 43.92' Row Length +12.0" End Stone x 2 = 45.92'Base Length 1 Rows x 34.0" Wide + 12.0" Side Stone x 2 = 4.83' Base Width

6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

6 Chambers x 14.7 cf = 88.5 cf Chamber Storage

517.9 cf Field - 88.5 cf Chambers = 429.4 cf Stone x 40.0% Voids = 171.8 cf Stone Storage

Chamber Storage + Stone Storage = 260.2 cf = 0.006 afOverall Storage Efficiency = 50.2%Overall System Size = $45.92' \times 4.83' \times 2.33'$

6 Chambers 19.2 cy Field 15.9 cy Stone

Pond 2P: Underground Detention

Summary for Pond 3P: Underground Detention

Page 35

11,600 sf,100.00% Impervious, Inflow Depth = 5.04" for 10-YEAR event Inflow Area = 1.43 cfs @ 12.07 hrs, Volume= Inflow = 4.875 cf 1.33 cfs @ 12.10 hrs, Volume= 4,875 cf, Atten= 7%, Lag= 2.0 min Outflow = Discarded = 0.05 cfs @ 8.88 hrs, Volume= 3,517 cf Primary = 1.28 cfs @ 12.10 hrs, Volume= 1,358 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 185.63' @ 12.10 hrs Surf.Area= 0.015 ac Storage= 0.030 af

Plug-Flow detention time= 166.9 min calculated for 4,873 cf (100% of inflow) Center-of-Mass det. time= 166.9 min (913.1 - 746.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	182.40'	0.015 af	11.00'W x 60.58'L x 3.50'H Field A
			0.054 af Overall - 0.017 af Embedded = 0.037 af x 40.0% Voids
#2A	182.90'	0.017 af	ADS_StormTech SC-740 +Cap x 16 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			16 Chambers in 2 Rows
		0.032 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	182.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	182.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	185.40'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.05 cfs @ 8.88 hrs HW=182.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.27 cfs @ 12.10 hrs HW=185.63' (Free Discharge) -1=Orifice/Grate (Passes 1.27 cfs of 5.65 cfs potential flow) -1=Orifice/Grate (Passes 1.27 cfs of 5.65 cfs potential flow)

Pond 3P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

16 Chambers x 45.9 cf = 735.0 cf Chamber Storage

2,332.2 cf Field - 735.0 cf Chambers = 1,597.2 cf Stone x 40.0% Voids = 638.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,373.9 cf = 0.032 afOverall Storage Efficiency = 58.9%Overall System Size = $60.58' \times 11.00' \times 3.50'$

16 Chambers 86.4 cy Field 59.2 cy Stone

Pond 3P: Underground Detention

	Р	ROPOSED CO	NDITIONS
42810.00 - PR	Type III 24-hr	10-YEAR Rai	nfall=5.28"
Prepared by VHB, Inc		Printed	8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software So	olutions LLC		Page 38

Summary for Link DP-1: Hopmeadow

Inflow A	rea =	216,412 sf, 58.05% Impervious	Inflow Depth = 2.94" for 10-YEAR event
Inflow	=	12.34 cfs @ 12.24 hrs, Volume=	53,086 cf
Primary	=	12.34 cfs @ 12.24 hrs, Volume=	53,086 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link DP-1: Hopmeadow

	PROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr 25-YEAR Rainfall=6.53"
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solution	ons LLC Page 39

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site	Runoff Area=4.141 ac 59.52% Impervious Runoff Depth=4.59" Flow Length=774' Tc=18.1 min CN=83 Runoff=15.48 cfs 68,934 cf
Subcatchment2: South Pervious	Runoff Area=0.408 ac 0.00% Impervious Runoff Depth=2.37" Tc=5.0 min CN=61 Runoff=1.14 cfs 3,507 cf
Subcatchment2A: South Restaurant	Runoff Area=0.100 ac 100.00% Impervious Runoff Depth=6.29" Tc=5.0 min CN=98 Runoff=0.66 cfs 2,284 cf
Subcatchment3: Retail Bldg	Runoff Area=0.266 ac 100.00% Impervious Runoff Depth=6.29" Tc=5.0 min CN=98 Runoff=1.77 cfs 6,082 cf
Subcatchment4: North Restaurant	Runoff Area=0.053 ac 100.00% Impervious Runoff Depth=6.29" Tc=5.0 min CN=98 Runoff=0.35 cfs 1,204 cf
Pond 1P: Infiltration Basin Discarded=	Peak Elev=175.27' Storage=1,742 cf Inflow=1.80 cfs 5,791 cf 0.14 cfs 4,991 cf Primary=0.56 cfs 800 cf Outflow=0.70 cfs 5,791 cf
Pond 2P: Underground Detention Discarded	Peak Elev=176.33' Storage=0.005 af Inflow=0.35 cfs 1,204 cf =0.02 cfs 865 cf Primary=0.33 cfs 339 cf Outflow=0.35 cfs 1,204 cf
Pond 3P: Underground Detention Discarded=0.	Peak Elev=185.68' Storage=0.030 af Inflow=1.77 cfs 6,082 cf 05 cfs 3,810 cf Primary=1.71 cfs 2,272 cf Outflow=1.76 cfs 6,082 cf
Link DP-1: Hopmeadow	Inflow=16.67 cfs 72,345 cf Primary=16.67 cfs 72,345 cf

Total Runoff Area = 216,412 sf Runoff Volume = 82,010 cf Average Runoff Depth = 4.55" 41.95% Pervious = 90,788 sf 58.05% Impervious = 125,624 sf

Summary for Subcatchment 1: Site

[47] Hint: Peak is 248% of capacity of segment #5

Runoff	=	15.48 cfs @	12.25 hrs,	Volume=
Route	d to Li	nk DP-1 : Hopn	neadow	

68,934 cf, Depth= 4.59"

Page 40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

Area	(ac) C	N Des	cription		
1	.676 6	61 >759	% Grass c	over, Good	, HSG B
2	.465 9	98 Unc	onnected p	pavement, l	HSG B
4	.141 8	33 Weig	ghted Aver	age	
1.	.676	40.4	8% Pervio	us Area	
2	.465	59.5			
2	.465	100.	00% Unco	nnected	
-				o	
	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(CIS)	
15.9	35	0.0200	0.04		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.28"
0.1	33	0.2000	7.20		Shallow Concentrated Flow,
0.0	440	0.0474	4.00		Unpaved Kv= 16.1 fps
0.9	110	0.0171	1.96		Shallow Concentrated Flow,
0.0	o	0.0625	5 09		Shallow Concentrated Flow
0.0	0	0.0025	5.00		Payed Ky= 20.3 fps
ΛQ	430	0 0220	7 95	6 25	Pine Channel RCP Round 12"
0.5	400	0.0220	1.55	0.20	12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe straight & clean
0.3	158	0.0200	9.93	17.56	Pipe Channel.
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.011
10 1	774	Total			

18.1 774 Total

Subcatchment 1: Site

Page 41

Summary for Subcatchment 2: South Pervious

Runoff = 1.14 cfs @ 12.08 hrs, Volume= Routed to Pond 1P : Infiltration Basin 3,507 cf, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

Summary for Subcatchment 2A: South Restaurant

0.66 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond 1P : Infiltration Basin

2,284 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

	Area	(ac) (CN D	escription		
*	0.	100	98			
	0.	100	10	00.00% Impe	ervious Area	a
(I	Tc min)	Length (feet)	Slop (ft/1	be Velocity ft) (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry,
				Sub	catchmer	nt 2A: South Restaurant
					Hydro	ograph
Elow (cfe)	0.7 0.65 0.5 0.5 0.5 0.45 0.4 0.35 0.2 0.3 0.25 0.2 0.15 0.1 0.05				- <th>Type III 24-hr 25-YEAR Rainfall=6.53" Runoff Area=0.100 ac Runoff Volume=2,284 cf Runoff Depth=6.29" Tc=5.0 min CN=98</th>	Type III 24-hr 25-YEAR Rainfall=6.53" Runoff Area=0.100 ac Runoff Volume=2,284 cf Runoff Depth=6.29" Tc=5.0 min CN=98
	0-	0 1 2	3 4 5	6 7 8 9 1	10 11 12 13 14 Time	4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 a e (b ours)

Summary for Subcatchment 3: Retail Bldg

Runoff = 1.77 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Underground Detention 6,082 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

Summary for Subcatchment 4: North Restaurant

Runoff = 0.35 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Underground Detention 1,204 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=6.53"

Area (ac	;) CN	l Dese	Description				
0.05	3 98	Unco	Unconnected pavement, HSG B				
0.05	0.053 100.00% Impervious Area						
0.05	0.053 100.00% Unconnected						
Tc Le (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 4: North Restaurant

Summary for Pond 1P: Infiltration Basin

22,128 sf, 19.69% Impervious, Inflow Depth = 3.14" for 25-YEAR event Inflow Area = 1.80 cfs @ 12.08 hrs, Volume= Inflow = 5,791 cf 0.70 cfs @ 12.33 hrs, Volume= 5,791 cf, Atten= 61%, Lag= 15.1 min Outflow = Discarded = 0.14 cfs @ 12.33 hrs, Volume= 4,991 cf Primary = 0.56 cfs @ 12.33 hrs, Volume= 800 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 175.27' @ 12.33 hrs Surf.Area= 2,014 sf Storage= 1,742 cf

Plug-Flow detention time= 111.8 min calculated for 5,789 cf (100% of inflow) Center-of-Mass det. time= 111.7 min (922.1 - 810.3)

Volume	Inver	t Avai	l.Storage	Storage Descriptio	n			
#1	174.00	'	4,584 cf	Custom Stage Da	Custom Stage Data (Irregular)Listed below (Recalc)			
Elevatior (feet	n S)	ourf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
174.00)	880	160.0	0	0	880		
175.00)	1,655	263.0	1,247	1,247	4,354		
176.00)	3,161	430.0	2,368	3,615	13,570		
176.30)	3,300	440.0	969	4,584	14,274		
Device	Routing	In	vert Outle	et Devices				
#1 Device 3		175	.20' 19.4 Limit	" x 36.0" Horiz. Or ted to weir flow at lo	ifice/Grate C= 0. w heads	600		
#2 Discarded		174	.00' 3.00	000 in/hr Exfiltration over Surface area Phase-In= 0.01'				
#3 Primary		172	.90' 12.0	2.0" Round Culvert				
	,		L= 8	6.0' CMP. mitered	to conform to fill.	Ke= 0.700		
			Inlet	/ Outlet Invert= 172	2.90'/172.10' S=	0.0093 '/' Cc= 0.900		
			n= 0	.013 Corrugated Pl	E. smooth interior.	Flow Area= 0.79 sf		
					,,			

Discarded OutFlow Max=0.14 cfs @ 12.33 hrs HW=175.27' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.56 cfs @ 12.33 hrs HW=175.27' (Free Discharge) -3=Culvert (Passes 0.56 cfs of 4.43 cfs potential flow)

1=Orifice/Grate (Weir Controls 0.56 cfs @ 0.87 fps)

Pond 1P: Infiltration Basin

Summary for Pond 2P: Underground Detention

Printed 8/21/2023

Page 48

2,297 sf,100.00% Impervious, Inflow Depth = 6.29" for 25-YEAR event Inflow Area = 0.35 cfs @ 12.07 hrs, Volume= Inflow = 1.204 cf 1,204 cf, Atten= 0%, Lag= 0.3 min Outflow = 0.35 cfs @ 12.07 hrs, Volume= Discarded = 0.02 cfs @ 9.82 hrs, Volume= 865 cf Primary = 0.33 cfs @ 12.07 hrs, Volume= 339 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 176.33' @ 12.07 hrs Surf.Area= 0.005 ac Storage= 0.005 af

Plug-Flow detention time= 77.1 min calculated for 1,204 cf (100% of inflow) Center-of-Mass det. time= 77.1 min (820.1 - 743.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	174.40'	0.004 af	4.83'W x 45.92'L x 2.33'H Field A
			0.012 af Overall - 0.002 af Embedded = 0.010 af x 40.0% Voids
#2A	174.90'	0.002 af	ADS_StormTech SC-310 +Cap x 6 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
		0.006 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	174.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	174.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	176.23'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.02 cfs @ 9.82 hrs HW=174.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.33 cfs @ 12.07 hrs HW=176.33' (Free Discharge) -1=Orifice/Grate (Passes 0.33 cfs of 3.64 cfs potential flow)

3=Broad-Crested Rectangular Weir (Weir Controls 0.33 cfs @ 0.87 fps)

Pond 2P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

6 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 43.92' Row Length +12.0" End Stone x 2 = 45.92'Base Length 1 Rows x 34.0" Wide + 12.0" Side Stone x 2 = 4.83' Base Width

6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

6 Chambers x 14.7 cf = 88.5 cf Chamber Storage

517.9 cf Field - 88.5 cf Chambers = 429.4 cf Stone x 40.0% Voids = 171.8 cf Stone Storage

Chamber Storage + Stone Storage = 260.2 cf = 0.006 afOverall Storage Efficiency = 50.2%Overall System Size = $45.92' \times 4.83' \times 2.33'$

6 Chambers 19.2 cy Field 15.9 cy Stone

Pond 2P: Underground Detention

Summary for Pond 3P: Underground Detention

11,600 sf,100.00% Impervious, Inflow Depth = 6.29" for 25-YEAR event Inflow Area = 1.77 cfs @ 12.07 hrs, Volume= Inflow = 6.082 cf Outflow = 1.76 cfs @ 12.08 hrs, Volume= 6,082 cf, Atten= 1%, Lag= 0.5 min Discarded = 0.05 cfs @ 8.29 hrs, Volume= 3,810 cf Primary = 1.71 cfs @ 12.08 hrs, Volume= 2,272 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 185.68' @ 12.08 hrs Surf.Area= 0.015 ac Storage= 0.030 af

Plug-Flow detention time= 149.8 min calculated for 6,080 cf (100% of inflow) Center-of-Mass det. time= 149.9 min (892.9 - 743.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	182.40'	0.015 af	11.00'W x 60.58'L x 3.50'H Field A 0.054 af Overall - 0.017 af Embedded = 0.037 af x 40.0% Voids
#2A	182.90'	0.017 af	ADS_StormTech SC-740 +Cap x 16 Inside #1 Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap 16 Chambers in 2 Rows
		0.032 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	182.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	182.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	185.40'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.05 cfs @ 8.29 hrs HW=182.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.71 cfs @ 12.08 hrs HW=185.68' (Free Discharge) 1=Orifice/Grate (Passes 1.71 cfs of 5.71 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 1.71 cfs @ 1.51 fps)

Pond 3P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

16 Chambers x 45.9 cf = 735.0 cf Chamber Storage

2,332.2 cf Field - 735.0 cf Chambers = 1,597.2 cf Stone x 40.0% Voids = 638.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,373.9 cf = 0.032 afOverall Storage Efficiency = 58.9%Overall System Size = $60.58' \times 11.00' \times 3.50'$

16 Chambers 86.4 cy Field 59.2 cy Stone

Pond 3P: Underground Detention

Summary for Link DP-1: Hopmeadow

Inflow Are	ea =	216,412 sf, 58.05% Impervious,	Inflow Depth = 4.01" for 25-YEAR event
Inflow	=	16.67 cfs @ 12.25 hrs, Volume=	72,345 cf
Primary	=	16.67 cfs @ 12.25 hrs, Volume=	72,345 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link DP-1: Hopmeadow

	PROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr 50-YEAR Rainfall=7.44"
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Solution	ons LLC Page 55

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site	Runoff Area=4.141 ac 59.52% Impervious Runoff Depth=5.44" Flow Length=774' Tc=18.1 min CN=83 Runoff=18.25 cfs 81,839 cf
Subcatchment2: South Pervious	Runoff Area=0.408 ac 0.00% Impervious Runoff Depth=3.02" Tc=5.0 min CN=61 Runoff=1.47 cfs 4,478 cf
Subcatchment2A: South Restaurant	Runoff Area=0.100 ac 100.00% Impervious Runoff Depth=7.20" Tc=5.0 min CN=98 Runoff=0.76 cfs 2,614 cf
Subcatchment3: Retail Bldg	Runoff Area=0.266 ac 100.00% Impervious Runoff Depth=7.20" Tc=5.0 min CN=98 Runoff=2.01 cfs 6,961 cf
Subcatchment4: North Restaurant	Runoff Area=0.053 ac 100.00% Impervious Runoff Depth=7.20" Tc=5.0 min CN=98 Runoff=0.40 cfs 1,378 cf
Pond 1P: Infiltration Basin Discarded=0.	Peak Elev=175.31' Storage=1,823 cf Inflow=2.23 cfs 7,092 cf 14 cfs 5,462 cf Primary=1.10 cfs 1,630 cf Outflow=1.25 cfs 7,092 cf
Pond 2P: Underground Detention Discarded	Peak Elev=176.34' Storage=0.005 af Inflow=0.40 cfs 1,378 cf =0.02 cfs 920 cf Primary=0.38 cfs 458 cf Outflow=0.40 cfs 1,378 cf
Pond 3P: Underground Detention Discarded=0.	Peak Elev=185.71' Storage=0.030 af Inflow=2.01 cfs 6,961 cf 05 cfs 3,998 cf Primary=1.96 cfs 2,962 cf Outflow=2.00 cfs 6,961 cf
Link DP-1: Hopmeadow	Inflow=20.27 cfs 86,889 cf Primary=20.27 cfs 86,889 cf

Total Runoff Area = 216,412 sf Runoff Volume = 97,270 cf Average Runoff Depth = 5.39" 41.95% Pervious = 90,788 sf 58.05% Impervious = 125,624 sf

Summary for Subcatchment 1: Site

[47] Hint: Peak is 292% of capacity of segment #5 [47] Hint: Peak is 104% of capacity of segment #6

Runoff	=	18.25 cfs @	12.24 hrs,	Volume=
Routed	d to	Link DP-1 : Hopm	neadow	

81,839 cf, Depth= 5.44"

PROPOSED CONDITIONS

Printed 8/21/2023

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

_	Area	(ac) C	N Des	cription		
	1.	1.676 61 >75% Grass cover, Good, HSG B				, HSG B
	2.465 98 Unconnected pavement, HSG B					
	4.	141 8	3 Weig	ghted Aver	age	
	1.	676	40.4	8% Pervio	us Area	
	2.	465	59.5	2% Imperv	vious Area	
	2.	465	100.	00% Unco	onnected	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.9	35	0.0200	0.04		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.28"
	0.1	33	0.2000	7.20		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.9	110	0.0171	1.96		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.0	8	0.0625	5.08		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.9	430	0.0220	7.95	6.25	Pipe Channel, RCP_Round 12"
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.011 Concrete pipe, straight & clean
	0.3	158	0.0200	9.93	17.56	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
_						n= 0.011
	101	771	Tatal			

18.1 774 Total

Subcatchment 1: Site

Summary for Subcatchment 2: South Pervious

Runoff = 1.47 cfs @ 12.08 hrs, Volume= Routed to Pond 1P : Infiltration Basin 4,478 cf, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

Summary for Subcatchment 2A: South Restaurant

Runoff = 0.76 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : Infiltration Basin 2,614 cf, Depth= 7.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

Summary for Subcatchment 3: Retail Bldg

Runoff = 2.01 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Underground Detention 6,961 cf, Depth= 7.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

Summary for Subcatchment 4: North Restaurant

Runoff = 0.40 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Underground Detention 1,378 cf, Depth= 7.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=7.44"

Area (ac)	CN	Desc	Description			
0.053	98	Unco	Unconnected pavement, HSG B			
0.053		100.	00% Impe	rvious Area	1	
0.053		100.00% Unconnected				
Tc Len (min) (fe	gth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry,	

Subcatchment 4: North Restaurant

Summary for Pond 1P: Infiltration Basin

22,128 sf, 19.69% Impervious, Inflow Depth = 3.85" for 50-YEAR event Inflow Area = 2.23 cfs @ 12.08 hrs, Volume= Inflow = 7.092 cf 1.25 cfs @ 12.19 hrs, Volume= 7,092 cf, Atten= 44%, Lag= 6.9 min Outflow = Discarded = 0.14 cfs @ 12.19 hrs, Volume= 5,462 cf Primary = 1.10 cfs @ 12.19 hrs, Volume= 1,630 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 175.31' @ 12.19 hrs Surf.Area= 2,070 sf Storage= 1,823 cf

Plug-Flow detention time= 103.2 min calculated for 7,090 cf (100% of inflow) Center-of-Mass det. time= 103.2 min (911.1 - 807.9)

Volume	Inver	t Avai	l.Storage	Storage Descriptio	n			
#1	174.00)'	4,584 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)		
Elevatio (fee	n S t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
174.0 175.0 176.0 176.3	0 0 0 0	880 1,655 3,161 3,300	160.0 263.0 430.0 440.0	0 1,247 2,368 969	0 1,247 3,615 4,584	880 4,354 13,570 14,274		
Device	Routing	In	vert Outle	et Devices				
#1	Device 3	175	.20' 19.4 Limit	" x 36.0" Horiz. Or ted to weir flow at lo	ifice/Grate C= 0.0	600		
#2 #3	Discardeo Primary)iscarded 174 Primary 172		3.000 in/hr Exfiltration over Surface area Phase-In= 0.01' 12.0" Round Culvert				
	Ĵ		L= 8 Inlet n= 0	6.0' CMP, mitered / Outlet Invert= 172 .013 Corrugated PI	to conform to fill, 2.90' / 172.10' S= E, smooth interior,	Ke= 0.700 0.0093 '/' Cc= 0.900 Flow Area= 0.79 sf		

Discarded OutFlow Max=0.14 cfs @ 12.19 hrs HW=175.31' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=1.10 cfs @ 12.19 hrs HW=175.31' (Free Discharge) -3=Culvert (Passes 1.10 cfs of 4.47 cfs potential flow)

1=Orifice/Grate (Weir Controls 1.10 cfs @ 1.08 fps)

Page 62

42810.00 - PR Prepared by VHB, Inc

Pond 1P: Infiltration Basin

Summary for Pond 2P: Underground Detention

Page 64

2,297 sf,100.00% Impervious, Inflow Depth = 7.20" for 50-YEAR event Inflow Area = 0.40 cfs @ 12.07 hrs, Volume= Inflow = 1.378 cf 1,378 cf, Atten= 0%, Lag= 0.3 min Outflow = 0.40 cfs @ 12.07 hrs, Volume= Discarded = 0.02 cfs @ 9.33 hrs, Volume= 920 cf Primary = 0.38 cfs @ 12.07 hrs, Volume= 458 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 176.34' @ 12.07 hrs Surf.Area= 0.005 ac Storage= 0.005 af

Plug-Flow detention time= 73.7 min calculated for 1,378 cf (100% of inflow) Center-of-Mass det. time= 73.6 min (814.9 - 741.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	174.40'	0.004 af	4.83'W x 45.92'L x 2.33'H Field A
			0.012 af Overall - 0.002 af Embedded = 0.010 af x 40.0% Voids
#2A	174.90'	0.002 af	ADS_StormTech SC-310 +Cap x 6 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
		0.006 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	174.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	174.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	176.23'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.02 cfs @ 9.33 hrs HW=174.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.38 cfs @ 12.07 hrs HW=176.34' (Free Discharge) -1=Orifice/Grate (Passes 0.38 cfs of 3.66 cfs potential flow)

3=Broad-Crested Rectangular Weir (Weir Controls 0.38 cfs @ 0.91 fps)
Pond 2P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

6 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 43.92' Row Length +12.0" End Stone x 2 = 45.92' Base Length 1 Rows x 34.0" Wide + 12.0" Side Stone x 2 = 4.83' Base Width

6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

6 Chambers x 14.7 cf = 88.5 cf Chamber Storage

517.9 cf Field - 88.5 cf Chambers = 429.4 cf Stone x 40.0% Voids = 171.8 cf Stone Storage

Chamber Storage + Stone Storage = 260.2 cf = 0.006 afOverall Storage Efficiency = 50.2%Overall System Size = $45.92' \times 4.83' \times 2.33'$

6 Chambers 19.2 cy Field 15.9 cy Stone

Pond 2P: Underground Detention

Summary for Pond 3P: Underground Detention

Printed 8/21/2023

Page 67

11,600 sf,100.00% Impervious, Inflow Depth = 7.20" for 50-YEAR event Inflow Area = 2.01 cfs @ 12.07 hrs, Volume= Inflow = 6.961 cf 2.00 cfs @ 12.08 hrs, Volume= 6,961 cf, Atten= 1%, Lag= 0.5 min Outflow = Discarded = 0.05 cfs @ 7.80 hrs, Volume= 3,998 cf Primary = 1.96 cfs @ 12.08 hrs, Volume= 2,962 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 185.71' @ 12.08 hrs Surf.Area= 0.015 ac Storage= 0.030 af

Plug-Flow detention time= 140.6 min calculated for 6,958 cf (100% of inflow) Center-of-Mass det. time= 140.7 min (881.9 - 741.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	182.40'	0.015 af	11.00'W x 60.58'L x 3.50'H Field A 0.054 af Overall - 0.017 af Embedded = 0.037 af x 40.0% Voids
#2A	182.90'	0.017 af	ADS_StormTech SC-740 +Cap x 16 Inside #1 Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap 16 Chambers in 2 Rows
		0.032 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	182.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	182.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	185.40'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.05 cfs @ 7.80 hrs HW=182.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=1.95 cfs @ 12.08 hrs HW=185.71' (Free Discharge) **1=Orifice/Grate** (Passes 1.95 cfs of 5.74 cfs potential flow) **3=Broad-Crested Rectangular Weir** (Weir Controls 1.95 cfs @ 1.59 fps)

Pond 3P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length
2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width
6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

16 Chambers x 45.9 cf = 735.0 cf Chamber Storage

2,332.2 cf Field - 735.0 cf Chambers = 1,597.2 cf Stone x 40.0% Voids = 638.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,373.9 cf = 0.032 afOverall Storage Efficiency = 58.9%Overall System Size = $60.58' \times 11.00' \times 3.50'$

16 Chambers 86.4 cy Field 59.2 cy Stone

Pond 3P: Underground Detention

Summary for Link DP-1: Hopmeadow

Inflow Are	ea =	216,412 sf, 58.05% Impervious	Inflow Depth = 4.82" for 50-YEAR event
Inflow	=	20.27 cfs @ 12.23 hrs, Volume=	86,889 cf
Primary	=	20.27 cfs @ 12.23 hrs, Volume=	86,889 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link DP-1: Hopmeadow

	PROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr 100-YEAR Rainfall=8.45"
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software Sol	lutions LLC Page 71

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1: Site	Runoff Area=4.141 ac 59.52% Impervious Runoff Depth=6.41" Flow Length=774' Tc=18.1 min CN=83 Runoff=21.33 cfs 96,326 cf
Subcatchment2: South Pervious	Runoff Area=0.408 ac 0.00% Impervious Runoff Depth=3.79" Tc=5.0 min CN=61 Runoff=1.86 cfs 5,615 cf
Subcatchment2A: South Restaurant	Runoff Area=0.100 ac 100.00% Impervious Runoff Depth=8.21" Tc=5.0 min CN=98 Runoff=0.86 cfs 2,980 cf
Subcatchment3: Retail Bldg	Runoff Area=0.266 ac 100.00% Impervious Runoff Depth=8.21" Tc=5.0 min CN=98 Runoff=2.29 cfs 7,936 cf
Subcatchment4: North Restaurant	Runoff Area=0.053 ac 100.00% Impervious Runoff Depth=8.21" Tc=5.0 min CN=98 Runoff=0.45 cfs 1,571 cf
Pond 1P: Infiltration Basin Discarded=0.	Peak Elev=175.36' Storage=1,935 cf Inflow=2.72 cfs 8,595 cf 15 cfs 5,924 cf Primary=1.99 cfs 2,672 cf Outflow=2.14 cfs 8,595 cf
Pond 2P: Underground Detention Discarded	Peak Elev=176.34' Storage=0.005 af Inflow=0.45 cfs 1,571 cf =0.02 cfs 975 cf Primary=0.44 cfs 596 cf Outflow=0.45 cfs 1,571 cf
Pond 3P: Underground Detention Discarded=0.	Peak Elev=185.73' Storage=0.031 af Inflow=2.29 cfs 7,936 cf 05 cfs 4,182 cf Primary=2.23 cfs 3,755 cf Outflow=2.28 cfs 7,936 cf
Link DP-1: Hopmeadow	Inflow=23.82 cfs 103,348 cf Primary=23.82 cfs 103,348 cf

Total Runoff Area = 216,412 sf Runoff Volume = 114,429 cf Average Runoff Depth = 6.35" 41.95% Pervious = 90,788 sf 58.05% Impervious = 125,624 sf

Summary for Subcatchment 1: Site

[47] Hint: Peak is 342% of capacity of segment #5 [47] Hint: Peak is 122% of capacity of segment #6

Runoff	=	21.33 cfs	@ `	12.24 hrs,	Volume=
Routed	to Link	DP-1 : Ho	opme	adow	

96,326 cf, Depth= 6.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

Area	(ac) C	N Des	cription		
1.	676 6	61 >759	% Grass co	over, Good	, HSG B
2.	465 9	98 Unco	onnected p	pavement, l	HSG B
4.	141 8	33 Weig	phted Aver	age	
1.	676	40.4	8% Pervio	us Area	
2.	465	59.5	2% Imperv	vious Area	
2.	465	100.	00% Unco	onnected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.9	35	0.0200	0.04		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.28"
0.1	33	0.2000	7.20		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.9	110	0.0171	1.96		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.0	8	0.0625	5.08		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.9	430	0.0220	7.95	6.25	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.011 Concrete pipe, straight & clean
0.3	158	0.0200	9.93	17.56	Pipe Channel,
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.011
10 1	774	Total			

18.1 774 Total

23

22

21-20-

19-18-

17-16-

15

Flow (cfs)

100-YEAR Rainfall=8.45"

Runoff Volume=96,326 cf

Runoff Area=4.141 ac

Runoff Depth=6.41"

Flow Length=774'

Tc=18.1 min

Printed 8/21/2023

Summary for Subcatchment 2: South Pervious

Runoff = 1.86 cfs @ 12.08 hrs, Volume= Routed to Pond 1P : Infiltration Basin 5,615 cf, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

Summary for Subcatchment 2A: South Restaurant

Runoff = 0.86 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : Infiltration Basin 2,980 cf, Depth= 8.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

	Area	(ac)	CN	Desc	ription		
*	0.	100	98				
	0.	100		100.0	00% Impe	rvious Area	a
	Тс	Leng	th S	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	5.0						Direct Entry,

Subcatchment 2A: South Restaurant

Summary for Subcatchment 3: Retail Bldg

Runoff = 2.29 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Underground Detention 7,936 cf, Depth= 8.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

Summary for Subcatchment 4: North Restaurant

Runoff = 0.45 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Underground Detention 1,571 cf, Depth= 8.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YEAR Rainfall=8.45"

Area (a	ac)	CN	Desc	ription		
0.0)53	98	Unco	nnected p	avement, I	HSG B
0.0)53		100.0	00% Impe	rvious Area	а
0.0)53		100.0	0% Unco	nnected	
Tc (min)	Lengt (fee	h S t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry,

Subcatchment 4: North Restaurant

Summary for Pond 1P: Infiltration Basin

22,128 sf, 19.69% Impervious, Inflow Depth = 4.66" for 100-YEAR event Inflow Area = 2.72 cfs @ 12.07 hrs, Volume= Inflow = 8.595 cf 2.14 cfs @ 12.13 hrs, Volume= 8,595 cf, Atten= 21%, Lag= 3.6 min Outflow = Discarded = 0.15 cfs @ 12.13 hrs, Volume= 5,924 cf Primary = 1.99 cfs @ 12.13 hrs, Volume= 2,672 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 175.36' @ 12.13 hrs Surf.Area= 2,146 sf Storage= 1,935 cf

Plug-Flow detention time= 95.2 min calculated for 8,592 cf (100% of inflow) Center-of-Mass det. time= 95.1 min (900.5 - 805.3)

Volume	Inver	t Avai	I.Storage	Storage Descriptio	n	
#1	174.00)'	4,584 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)
Elevatio (feet	n S t)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
174.0 175.0	0 0	880 1.655	160.0 263.0	0 1.247	0 1.247	880 4.354
176.0 176.3	0 0	3,161 3,300	430.0 440.0	2,368 969	3,615 4,584	13,570 14,274
Device	Routing	In	vert Outle	et Devices		
#1	Device 3	175	.20' 19.4 Limit	" x 36.0" Horiz. Or ted to weir flow at lo	ifice/Grate C= 0. w heads	600
#2 #3	Discardeo Primary	l 174 172	00' 3.00 90' 12.0 L= 8 Inlet n= 0	0 in/hr Exfiltration " Round Culvert 6.0' CMP, mitered / Outlet Invert= 172 .013 Corrugated Pl	to conform to fill, 2.90' / 172.10' S= E, smooth interior,	ea Phase-In= 0.01' Ke= 0.700 0.0093 '/' Cc= 0.900 Flow Area= 0.79 sf

Discarded OutFlow Max=0.15 cfs @ 12.13 hrs HW=175.36' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.15 cfs)

Primary OutFlow Max=1.98 cfs @ 12.13 hrs HW=175.36' (Free Discharge) **3=Culvert** (Passes 1.98 cfs of 4.52 cfs potential flow)

1=Orifice/Grate (Weir Controls 1.98 cfs @ 1.32 fps)

42810.00 - PR

Pond 1P: Infiltration Basin

Summary for Pond 2P: Underground Detention

2,297 sf,100.00% Impervious, Inflow Depth = 8.21" for 100-YEAR event Inflow Area = 0.45 cfs @ 12.07 hrs, Volume= Inflow = 1.571 cf 1,571 cf, Atten= 0%, Lag= 0.3 min Outflow = 0.45 cfs @ 12.07 hrs, Volume= Discarded = 0.02 cfs @ 8.91 hrs, Volume= 975 cf Primary = 0.44 cfs @ 12.07 hrs, Volume= 596 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 176.34' @ 12.07 hrs Surf.Area= 0.005 ac Storage= 0.005 af

Plug-Flow detention time= 70.6 min calculated for 1,571 cf (100% of inflow) Center-of-Mass det. time= 70.6 min (810.2 - 739.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	174.40'	0.004 af	4.83'W x 45.92'L x 2.33'H Field A
			0.012 af Overall - 0.002 af Embedded = 0.010 af x 40.0% Voids
#2A	174.90'	0.002 af	ADS_StormTech SC-310 +Cap x 6 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
		0.006 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	174.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Discarded	174.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#3	Device 1	176.23'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.02 cfs @ 8.91 hrs HW=174.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.43 cfs @ 12.07 hrs HW=176.34' (Free Discharge) -1=Orifice/Grate (Passes 0.43 cfs of 3.68 cfs potential flow)

3=Broad-Crested Rectangular Weir (Weir Controls 0.43 cfs @ 0.95 fps)

Pond 2P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

6 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 43.92' Row Length +12.0" End Stone x 2 = 45.92' Base Length 1 Rows x 34.0" Wide + 12.0" Side Stone x 2 = 4.83' Base Width

6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

6 Chambers x 14.7 cf = 88.5 cf Chamber Storage

517.9 cf Field - 88.5 cf Chambers = 429.4 cf Stone x 40.0% Voids = 171.8 cf Stone Storage

Chamber Storage + Stone Storage = 260.2 cf = 0.006 afOverall Storage Efficiency = 50.2%Overall System Size = $45.92' \times 4.83' \times 2.33'$

6 Chambers 19.2 cy Field 15.9 cy Stone

PROPOSED CONDITIONS

Pond 2P: Underground Detention

Summary for Pond 3P: Underground Detention

11,600 sf,100.00% Impervious, Inflow Depth = 8.21" for 100-YEAR event Inflow Area = 2.29 cfs @ 12.07 hrs, Volume= Inflow = 7.936 cf 7,936 cf, Atten= 0%, Lag= 0.4 min Outflow = 2.28 cfs @ 12.08 hrs, Volume= Discarded = 0.05 cfs @ 7.22 hrs, Volume= 4,182 cf Primary = 2.23 cfs @ 12.08 hrs, Volume= 3,755 cf Routed to Link DP-1 : Hopmeadow

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 185.73' @ 12.08 hrs Surf.Area= 0.015 ac Storage= 0.031 af

Plug-Flow detention time= 132.2 min calculated for 7,934 cf (100% of inflow) Center-of-Mass det. time= 132.3 min (871.9 - 739.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	182.40'	0.015 af	11.00'W x 60.58'L x 3.50'H Field A
#2A	182.90'	0.017 af	ADS_StormTech SC-740 +Cap x 16 Inside #1 Effective Size= 44.6 "W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0 "W x 30.0"H x 7.56'L with 0.44' Overlap
		0.032 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Primary	182.90'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#2	Discarded	182.40'	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'		
#3	Device 1	185.40'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir		
			Head (feet) 0.20 0.40 0.60 0.80 1.00		
			Coef. (English) 2.80 2.92 3.08 3.30 3.32		

Discarded OutFlow Max=0.05 cfs @ 7.22 hrs HW=182.44' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=2.23 cfs @ 12.08 hrs HW=185.73' (Free Discharge) 1=Orifice/Grate (Passes 2.23 cfs of 5.78 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 2.23 cfs @ 1.67 fps)

Pond 3P: Underground Detention - Chamber Wizard Field A

Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

8 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 58.58' Row Length +12.0" End Stone x 2 = 60.58' Base Length
2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width
6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

16 Chambers x 45.9 cf = 735.0 cf Chamber Storage

2,332.2 cf Field - 735.0 cf Chambers = 1,597.2 cf Stone x 40.0% Voids = 638.9 cf Stone Storage

Chamber Storage + Stone Storage = 1,373.9 cf = 0.032 afOverall Storage Efficiency = 58.9%Overall System Size = $60.58' \times 11.00' \times 3.50'$

16 Chambers 86.4 cy Field 59.2 cy Stone

Pond 3P: Underground Detention

	PROPOSED CONDITIONS
42810.00 - PR	Type III 24-hr 100-YEAR Rainfall=8.45"
Prepared by VHB, Inc	Printed 8/21/2023
HydroCAD® 10.20-3c s/n 01038 © 2023 HydroCAD Software S	Solutions LLC Page 86

Summary for Link DP-1: Hopmeadow

Inflow A	Area =	216,412 sf, 58.05% Impervious,	Inflow Depth = 5.73"	for 100-YEAR event
Inflow	=	23.82 cfs @ 12.23 hrs, Volume=	103,348 cf	
Primary	y =	23.82 cfs @ 12.23 hrs, Volume=	103,348 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link DP-1: Hopmeadow